MoodScope:

Sensing mood from smartphone usage patterns

Robert Likamwa Lin Zhong

Yunxin Liu Nicholas D. Lane

Mood-Enhanced Apps

Personal analytics

Media recommendation

Social ecosystems

Affective Computing (Mood and Emotion)

Biometric-based (Skin conductivity, Temperature, Pulse rate)

Highly temporal High cost of deployment Hassle Audio/Video-based (AffectAura, EmotionSense)

Captures expressions Power hungry Slightly invasive

Can your mobile phone infer your mood?

From already-available, low-power information?*

* No audio/video sensing, no body-instrumentation

Usage Trace-based (MoodScope)

Passive, Continuous *How to model mood?*

Biometric-based

Very direct, Fine-grained High cost of deployment

Audio/Video-based

Captures expressions
Power hungry
Slightly invasive

Mood is...

- ... a persistent long-lasting state
 - Lasts hours or days
 - Emotion lasts seconds or minutes
- ... a strong social signal
 - Drives communications
 - Drives interactions
 - Drives activity patterns

How is the user communicating?

What apps is the user using?

iPhone Livelab Logger

- Web history
- Phone call history
- Sms history
- Email history
- Location history
- App usage

Runs as shell Hash private data Nightly uploads

Adapted From C. Shepard, A. Rahmati, C. Tossel, L. Zhong, And P. Kortum, "Livelab: Measuring Wireless Networks And Smartphone Users In The Field," In *Hotmetrics*, 2010.

Mood Journaling App

<u>User-base</u> 32 users aged between 18 and 29 11 females

Inference

- Detect a mood pattern
- Validate with only 60 days of data
- Wide range of candidate usage data
- Low computational resources

Daily Mood Averages

- Separate pleasure, activeness dimension
- Take the average over a day

Exploring Features

- Communication
 - o SMS
 - o Email
 - o Phone Calls
- To whom?
 - o # messages
 - Length/Duration

Consider "Top 10" Histograms

- ? How many phone calls were made to #1? #2? ... #10?
- ? How much time was spent on calls to #1? #2? ... #10?

Exploring Features

- Communication
 - o SMS
 - o Email
 - o Phone Calls
- To whom?
 - o # messages
 - Length/Duration

- Usage Activity
 - Applications
 - Websites visited
 - Location History
- Which (app/site/location)?
 - o # instances

Previous Mood

Use previous 2 pairs of mood labels

Data Type	Histogram by:	Dimensions
Email contacts	# Messages	10
	# Characters	10
SMS contacts	# Messages	10
	# Characters	10
Phone call contacts	# Calls	10
	Call Duration	10
Website domains	# Visits	10
Location Clusters	# Visits	10
Apps	# App launches	10
	App Duration	10
Categories of Apps	# App launches	12
	App Duration	12
Previous Pleasure and Activeness Averages	N/A	4

Data Type	Histogram by:	Dimensions
Email contacts	# Messages	10
	# Characters	10
SMS contacts	# Messages	10
	# Characters	10
Phone call contacts	# Calls	10
	Call Duration	10
Website domains	# Visits	10
Location Clusters	# Visits	10
Apps	# App launches	10
	App Duration	10
Categories of Apps	# App launches	12
	App Duration	12
Previous Pleasure and Activeness Averages	N/A	4

Model Design

- Multi-Linear Regression
 - Minimize Mean Squared Error
- Leave-One-Out Cross-Validation
- Sequential Forward Feature Selection during training

Sequential Feature Selection

Improvement of model as SFS adds more features

Sample Prediction

Error distributions

 Error² of > 0.25 will misclassify a mood label

 $93\% < 0.25 \text{ error}^2$

vs. Strawman Models

Models using full-knowledge of a user's data with LOOCV

Model A: Assume User's Average Mood 73% Accuracy

Model B: Assume User's Previous Mood 61% Accuracy

MoodScope Training: 93% Accuracy.

Personalized Training

Personalized/All-user Hybrid Training

Resource-friendly Implementation

MoodScope:

Sensing mood from smartphone usage patterns

- Robustly (93%) detect each dimension of daily mood
 - On personalized models
 - Starts out with 66% on generalized models
- Validate with 32 users x 2 months worth of data
- Simple resource-friendly implementation

