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A vision of vision...

... continuous mobile vision!

Sense Compute Interact

Energy efficiency goal: 10 mW 

• Idle power consumption of smartphone
• Week-long use of small battery (2 Wh)
• Opens door to energy-harvesting solutions
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Vision demands energy

5

Sense Compute

1 nJ per pixel
Ultra-low-power CMOS imager

(Himax 2016)

12 nJ per data movement
Quantifying Energy Cost of [Mobile] Data Movement 

(Pandiyan, Wu IISWC 2014)



Key Idea: 
Shift processing into the analog domain!
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Compute

Analog Challenges:
Design complexity
Noisy signal fidelity

SenseProcess + Sense



Complexity limits the extent of analog computing

No bus for control/data

• Analog exchanges data on
pre-routed interconnects

• Congestion and overlap 
cause parasitics

Source: Wikipedia

Challenge #1: Design complexity

RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile Vision, LiKamWa et al. [ISCA ‘16]
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Analog circuits suffer from

High C
Low-noise

High-Energy

Low C
High-noise

Low-Energy

Accumulating signal noise limits the 
extent of efficient analog computing

Challenge #2: Noisy signal fidelity
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or
v2n = kBT/C

thermal noise
E = CV 2/2

energy cost



Complexity and noise limit 
the efficiency of prior analog architectures
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RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile Vision, LiKamWa et al. [ISCA ‘16]

Analog neural processing
(St. Amant et al @ UT-Austin, 2014)

ADC consumes >90% 
of energy consumption



Insight #1: 
Vision is highly structured

• Repetitive building blocks
◦ Reusable structure

• Patch-based operations
◦ Data locality

• Dataflow bandwidth 
reduces with processing

◦ “Feed-forward”
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ConvNet blocks
Convolution
Max Pooling

...

“key”



What about noise?
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“jigsaw”



Insight #2: Noisy images are okay for vision
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Insight #2: Noisy images are okay for vision
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Programmable analog ConvNet execution

• Low-complexity modules for design scalability

• Noise mechanisms to trade accuracy/efficiency

Reduce readout energy by 100x

RedEye 
vision sensor architecture
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Analog-to-Digital
Conversion

Pixel 
Column

Correlated Double
Sampling (CDS)

Analog 
Memory

Vertical Weighted 
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Flow 

Control

Column Vector
of Kernel

H columns H columns

Convolutional

Max Pooling

Quantization4

Storage

3

2

1

H columns H columns

Quantization
Noise Tuning

Capacitance
Noise Tuning

RedEye
Output
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Reusable Modules
• Programmable kernel
• Cyclic flow for reuse



Reusable Modules
• Programmable kernel
• Cyclic flow for reuse

Data locality for patches
• Streaming processing
• Column topology
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Vertical access 
through

temporal buffering

Horizontal access 
through

column interconnects

Streaming patch-based access



Reusable Modules
• Programmable kernel
• Cyclic flow for reuse

Data locality for patches
• Streaming processing
• Column topology
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Noise-tuning mechanisms
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Source: Wikipedia

RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile Vision, LiKamWa et al. [ISCA ‘16]

Mixed-signal Multiply-Accumulate
w/tunable fidelity vs. efficiency

SAR ADC 
w/tunable-resolution vs. efficiency
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Estimation and Evaluation
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RedEye-caffe
Sim. Framework

RedEye+GoogLeNet_v1

Cadence Spectre

+ Quantization 
Noise Layer 

+ Processing
Noise Layer

Parametrized 
Behavioral

Model

https://github.com/JulianYG/redeye_sim

# Noise
# Power
# Timing

+ Quantized 
Weights



Admitting noise saves energy!
(but our current process limits us to 40 dB)

23

Top-5 Accuracy
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RedEye reduces readout energy by >100x
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RedEye reduces readout energy by >100x

at expense of processing energy
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RedEye can help state of the art 
ConvNet processing efficiency by 2x
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EyeRiss [ISCA ’16, ISSCC ‘16] Chen et al

Eyeriss+ Image Sensor:
EyeRiss (Conv Layers): 5.9 mJ

Image Sensor: 1.0 mJ
EyeRiss (Full Layers): 2.1 mJ

Total: 9.0 mJ

EyeRiss + RedEye:
RedEye (Analog Conv): 2.5 mJ

RedEye Readout: 0.001 mJ
Eyeriss (Full Layers): 2.1 mJ   

Total: 4.6 mJ
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RedEye limitations (and opportunities!) 

• RedEye is bounded to 4o dB (Limits energy savings)
• Unit capacitance of process technology

• ConvNet not optimized for RedEye architecture

• RedEye is strictly feed-forward (no recurrence, e.g., LSTM nets)
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RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile Vision, LiKamWa et al. [ISCA ‘16]



Realizing RedEye chip

• Silicon validation in 65 nm TSMC
◦ Non-idealities: noise, non-linearity, offset, process variation
◦ Opportunities: voltage scaling, sub-threshold circuits
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App

? Raw image privacy through noisy degradation ?

• Idea:  App can have vision info, not image data. 

• Degrade image and features (e.g., insert noise)

• Ensure vision usability, but image privacy

` ADC

ConvNet 
Features

Image 
Reconstruction

Vision
Info

Depth 1 Reverse Depth 2 Reverse Depth 3 Reverse Depth 4 Reverse Depth 5 Reverse

“Understanding Deep Representations by Inverting Them”, Mahendran et al. 
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Related Work
• Hardware ConvNet acceleration

◦ Reconfigurable flexibility
◦ NeuFlow: Dataflow vision processing system-on-a-chip (Pham et al, MSCS 2012)
◦ Origami: A convolutional network accelerator (Cavigelli et al, GLSVLSI 2012)

◦ A dynamically configurable coprocessor for convolutional neural networks (Chakradhar et al, SIGARCH News 2010)

◦ Data Movement reduction
◦ Convolution engine: balancing efficiency & flexibility in specialized computing (Qadeer et al, SIGARCH News, 2013)

◦ Memory-centric accelerator design for convolutional neural networks (Peemen et al, ICCD 2013)
◦ DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. (Chen et al, ASPLOS 2014)
◦ PRIME: A Novel Processing-in-memory Architecture for NN Computation in ReRAM-based Main Memory (Chi et al, ISCA 2016)

◦ ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars (Shafiee et al, ISCA 2016)

◦ EIE: Efficient Inference Engine on Compressed Deep Neural Network (Han et al, ISCA 2016)

◦ Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks (Chen et al, ISCA 2016) 

• Limited-precision ConvNets

◦ General-purpose code acceleration with limited-precision analog computation (St. Amant et al, ISCA 2014)

◦ Continuous real-world inputs can open up alternative accelerator designs (Belhadj et al, SIGARCH News 2013)
◦ Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators (Reagen et al, ISCA 2016)
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Programmable analog ConvNet execution

• Modules for design scalability

• Tunable noise for accuracy and efficiency

• Programmability for flexibility

Open-Source simulation framework:
https://github.com/JulianYG/redeye_sim


