
RedEye: Analog ConvNet Image Sensor Architecture
for Continuous Mobile Vision

Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, Lin Zhong
Department of Electrical and Computer Engineering

Rice University
{roblkw, houyh, yg18, mia.polansky, lzhong}@rice.edu

Abstract—Continuous mobile vision is limited by the in-
ability to efficiently capture image frames and process vision
features. This is largely due to the energy burden of analog
readout circuitry, data traffic, and intensive computation. To
promote efficiency, we shift early vision processing into the
analog domain. This results in RedEye, an analog convolutional
image sensor that performs layers of a convolutional neural
network in the analog domain before quantization. We design
RedEye to mitigate analog design complexity, using a modular
column-parallel design to promote physical design reuse and
algorithmic cyclic reuse. RedEye uses programmable mecha-
nisms to admit noise for tunable energy reduction. Compared
to conventional systems, RedEye reports an 85% reduction in
sensor energy, 73% reduction in cloudlet-based system energy,
and a 45% reduction in computation-based system energy.

Keywords-continuous mobile vision; programmable analog
computing; computer vision; pre-quantization processing;

I. INTRODUCTION

The recent emergence of wearable devices have led many
to entertain the concept of “showing computers what you
see” [1], [2], or continuous mobile vision. While devices
are increasingly capable of interpreting visual data, they
face a daunting barrier: energy efficiency. For example,
continuous vision tasks drain the battery of Google Glass
in 40 minutes [3]. While process technology and system-
level optimization may continue to improve the efficiency
of digital circuits, recent measurements have pointed to
a fundamental bottleneck to energy efficiency: the image
sensor, especially its analog readout circuitry [4].

The analog readout bottleneck, illustrated in Figure 1a, is
fundamental for two reasons. First, compared to digital cir-
cuits, the energy efficiency of analog readout improves much
slower over technological generations. Namely, smaller tran-
sistors and lower supply voltage do not automatically make
analog circuits more efficient. Second, while the trend in the
solid-state circuit community is to move functionality from
the analog domain to the digital, the analog readout will
necessarily exist as a bridge from the analog physical world
to the digital realm. That is, conventional systems force
imaging data to traverse a costly analog-to-digital converter
to be usable by digital systems. Only then can the system
apply algorithms for vision, such as processing convolutional

Features

Host System

Pixel
Array

Columns

Image Sensor

Analog
Readout
Chains

Sensor
Processing

Layers

Sensor
Processing

Layers

(a) Conventional sensor processing flow

Host SystemRedEye

Features
Pixel
Array

Columns

Analog
Readout
Chains

Sensor
Processing

Layers

Sensor
Processing

Layers

(b) RedEye sensor processing flow

Figure 1: Conventional sensor processing incurs significant
workload on the analog readout (top), whereas early processing
alleviates the quantization in the analog readout (bottom).

neural network (ConvNet) features for image classification.
We elaborate upon the bottleneck in §II-A.

Toward addressing this bottleneck, our key idea is to
push early processing into the analog domain to reduce the
workload of the analog readout, as illustrated in Figure 1b.
This results in our design of RedEye, an analog convolutional
image sensor for continuous mobile vision. RedEye discards
raw data, exporting features generated by processing a
ConvNet in the analog domain. This saves energy not only in
the sensor’s analog readout but also throughout the system.

In designing RedEye, we address the following important
challenges. (i) Analog circuits suffer from high design com-
plexity, discouraging portability between process technology
nodes. RedEye constrains the complexity with a modular
design that facilitates physical reuse within a circuit design
and algorithmic reuse through a cyclic dataflow. (ii) Analog
processing is subject to accumulating noise, impairing task
accuracy. We identify key noise-energy tradeoffs to sacrifice
energy to temper noise during processing. RedEye provides
mechanisms to tune noise parameters for efficiency and
accuracy at run-time. (iii) Developers using RedEye require
an estimation of a ConvNet’s task accuracy and energy
consumption under the influence of noise. We provide a
simulation framework to help developers tune the balance of

accuracy and efficiency when running ConvNets on RedEye.
§III presents the system design of RedEye.

We present the circuit design of RedEye in 0.18-µm pro-
cess, and model circuit noise, power and timing character-
istics with Cadence Spectre. We use these characteristics in
the RedEye simulation to precisely estimate circuit behavior.
§IV provides details of RedEye’s circuit design.

We evaluate RedEye on early layers of the GoogLeNet
ConvNet, the image classification champion of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) in
2014. We use a simulation-based framework to estimate task
accuracy and energy consumption. We find that RedEye can
accurately process early layers of ConvNets, while reducing
the energy consumption of an image sensor from 1.1 mJ to
0.2 mJ per frame. By processing convolutions in the analog
domain, RedEye also reduces the computational workload of
its host device, reducing the energy consumed by a Jetson
TK1 from 406 mJ to 226 mJ per frame. RedEye positions a
convergence of analog circuit design, systems architecture,
and machine learning, which allows it to perform early
operations in the image sensor’s analog domain, moving
toward continuous mobile vision at ultra low power.

While we demonstrate the tremendous efficiency benefit
of RedEye, we note that this comes at the expense of analog
circuit development effort and production cost. We do not
provide a RedEye layout design, nor have we investigated
the economics of the RedEye premise. Instead, we hope the
efficiency benefit provides strong incentive that invites more
research into this approach and analog/mixed-signal circuit
experts to optimize the analog design cost.

We note the efficiency bottleneck in the analog readout
is universal to all sensors, not just image sensors. Because
the energy consumed by digital processing of sensor data
is usually proportional to data size, the analog readout
consumes a large proportion of overall system energy, even
for low-rate sensors such as accelerometers. We project that
the ideas of RedEye, especially those related to shifting pro-
cessing into the analog domain for efficiency and optimizing
noise configuration, will be effective in improving system
efficiency for a wide range of continuous sensing modalities.

II. BACKGROUND

A. Image sensing

Modern mobile devices employ CMOS image sensors for
photography and videography. While more efficient than
CCD, they still consume hundreds of milliwatts, due to be
their power-hungry analog readout [4].

Modern image sensors consist of three major components:
pixel array, analog readout, and digital logic. The pixel array
converts light into electrons and then voltages, consuming
little energy [5]. Analog readout amplifies analog signals
from the pixel array and converts them into digital values.
Digital logic maintains sensor operation, managing timing
generation, frame scanner and drivers, and data interface.

Modern sensors employ a column-based architecture for
analog readout; pixels in each column share dedicated cir-
cuitry. Column amplifiers sample and amplify raw pixels to
harness available signal range and overcome noise; they con-
sume static power to bias the transistors operating linearly.
Column ADCs digitize amplified signals, consuming static
and dynamic power. The analog readout consumes 50%-
75% of overall energy in recent sensor designs [5]–[7]. This
is because (i) the entire image signal must undergo analog
readout and (ii) analog readout is designed for high-fidelity.

We emphasize that digital optimization, e.g., low-power
hardware for data reduction [8], early discard, or compu-
tational offloading, do not affect energy consumed by the
analog readout. This is the fundamental motivation behind
our proposition to move processing before analog readout.

B. Analog computing efficiency

Analog computing is more efficient than digital comput-
ing; for basic arithmetic, such as addition and multiplication,
the energy per operation of analog implementations is orders
of magnitude lower [9]. Unlike digital computing, which
uses multiple binary charges (bits) to represent circuit state,
analog computing uses a single charge to represent a value.
This reduces hardware count; analog addition only needs an
interconnect to join two currents, whereas a 16-bit digital
adder requires over 400 transistors.

More importantly, profitable tradeoffs between energy
efficiency and signal fidelity can be made in the analog do-
main, relevant for noise-robust vision tasks. That is, energy
consumption of analog circuits can be reduced by allowing
a higher noise level [10], [11]. This is because maintaining
state through capacitance C is susceptible to thermal noise
V 2
n = kT/C [12]. While raising C deters noise, the energy

required to fill the memory cell rises proportionally. Hence,

E ∝ C ∝ 1/ V 2
n

Therefore, the choice of C is a fundamental tradeoff between
fidelity and efficiency of analog computing. Here we identify
inherent energy-noise tradeoffs in analog computing.

Memory: As an analog pipeline must be constructed in
stages to facilitate configurability and maintainability, analog
memory is indispensable for inter-stage buffers. Memory
cells use capacitors to maintain states, and thus exhibit
energy-noise tradeoffs upon reading and writing values.

Arithmetic: Arithmetic in charge-based circuits, such as
in RedEye, typically requires an operational amplifier (op
amp), which induces thermal noise ∝ 1/C and energy ∝ C.

In current-based arithmetic circuits, signal currents are
shadowed by thermal noise currents, which cannot be in-
definitely lowered due to process and design constraints. To
improve signal fidelity, the effective approach is to elevate
signal current itself, which increases power draw.

Readout: To traverse the analog/digital boundary consumes
significant energy. We choose Successive Approximation
Register (SAR) as the on-chip analog-to-digital converter
(ADC), not only because of its unparalleled efficiency in
low/mid-resolution applications [13]–[17], but also for its
ability to trade accuracy for energy. SAR uses an array of
capacitors to approximate an analog signal into digital bits.

These capacitors are the source of systematic and random
inaccuracies. Systematic inaccuracy is determined by capac-
itor mismatch in the array, which impacts the approximate
signal and thus the correctness of the output. Using a larger
unit capacitor C0 improves matching but consumes more
energy, creating a tradeoff between efficiency and linearity.

Random errors in SAR are dominated by quantization
noise. With ADC resolution n increased by each bit, quan-
tization noise amplitude diminishes in half. However, this
doubles energy consumption, as the total size of the capaci-
tor array (CΣ = 2nC0) increases exponentially with n. This
is yet another energy-noise tradeoff that we elect to utilize.
Analog design complexity: While basic operations consist
of few components, the complexity of large-scale analog
systems can be prohibitively high. Routing interconnects is
particularly daunting; unlike digital transactions on shared
buses, analog data exchanges via pre-defined routes. Design-
ers must preplan routes to avoid congestion and overlap.

In addition, without automatic verification, an analog
designer must formulate and manually verify circuit specifi-
cations. Moreover, a high analog hardware count slows the
simulation process and aggravates the verification cost.

Design complexity limits portability between fabrication
processes, as specialized units requires redesign for perfor-
mance standards. Complexity also limits generalizability;
complex hardware is difficult to adapt and scale. More im-
portantly, complexity constrains depth of operation; chaining
multiple operations can become complex for verification.

C. ConvNets

We design RedEye to compute continuous mobile vision
tasks using Convolutional Neural Networks, also called
ConvNets, for their efficacy in state-of-the-art object detec-
tion, handwriting recognition, and face detection [18]. This
prominence has resulted in active academic and industrial
research on implementing ConvNets for vision tasks.

ConvNets operate by feeding 3-dimension data through
sequential layers of processing to generate vision features.
Each layer consists of a set of neurons; each neuron takes in
multiple input values from a local receptive field of neurons
from the previous layer. The neuron operates on these values
to generate a single output. Layers of neurons come in a
small variety of types. Here we cover the key types of layers:

Convolutional layer neurons multiply a three dimensional
receptive field of inputs with a kernel of weights to generate
an output. Neurons in a convolution layer share kernel
weights to perform their processing. Multiple sets of weights

per layer generate depth channels of data. A backpropagation
process trains weights to alter the convolution operation.

Nonlinearity layer neurons use activation functions to
introduce nonlinear saturation to the outputs of convolutional
layers. Sigmoid, tanh, and rectification functions have all
been used to create non-linearity.

Max pooling layer neurons receive features generated
from a receptive field of processed output, and identify the
feature with maximum response. This allows the network to
be robust to minute changes in the feature space.

These layers, in addition to other layers, such as normal-
ization layers to constrain the signal swing, can be stacked in
various sequential order, invoking each layer multiple times
to create deep structures. For example, the AlexNet [19]
image recognition ConvNet uses 6 convolutional layers, 7
non-linearity layers, 3 pooling layers, 2 normalization layers.
AlexNet also includes 7 “other” layers late in its operation.

Because trained ConvNets generalize across image inputs,
they are naturally robust to noise [20]. We study and exploit
robustness to leverage energy-noise tradeoffs in RedEye.

III. REDEYE SYSTEM ARCHITECTURE

We design RedEye, an analog computational image sensor
architecture that captures an image and passes it through a
deep convolutional network (ConvNet) while in the analog
domain, exporting digital vision features. This substantially
reduces the workload of the analog-to-digital quantization
and of the post-sensor digital host system, enabling efficient
continuous mobile vision. We design RedEye, shown in
Figure 2, to constrain design complexity, area, and energy
consumption, while accurately executing vision tasks.

A. Overview

Our key insight toward addressing the analog readout
bottleneck is that acceptable computer vision does not need
high-fidelity images or high-fidelity computation. Leverag-
ing this, we move early-stage ConvNet vision processing
from the digital host system into the sensor’s analog domain.
This shift substantially reduces the workload of the analog
readout and therefore reduces system energy consumption.

As analog circuits suffer from design complexity and
accumulating signal noise, which limit the potential depth
of operation in the analog domain, RedEye exploits the
structure of ConvNet to effectively contain complexity and
noise. The architecture avoids redundant design by sending
data through layers of processing modules, cyclically reusing
modules before analog readout, as shown in Figure 3. As
modules process locally on patches of pixels or previous
data, we can further reduce the complexity of the intercon-
nects by structuring the operation layers into a column-based
topology. This arranges the modules in each processing layer
in a column pipeline, as illustrated in Figure 2. This grants
each processing module a physical proximity to its input
data. §III-B elaborates upon the RedEye hardware design.

RedEye
Modules

Pixel Array

RedEye
Control Plane

Digitally
Clocked

Controller

Program
SRAM

System
Bus

Noise tuning

Kernel config

Programming

Feature
SRAM

System
Bus Send Results

Flow control

RedEye Output

Figure 2: RedEye. The controller programs kernel weights,
noise mechanisms, and flow control into RedEye modules.
Output is stored in Feature SRAM for retrieval.

Analog-to-Digital
Conversion

Pixel
Column

Correlated Double
Sampling (CDS)

Analog
Memory

Vertical Weighted
Averaging

Horizontal
Accumulation

Horizontal
Max Pooling

Vertical
Max Pooling

Cyclic
Flow

Control

Column Vector
of Kernel

H columns H columns

Convolutional

Max Pooling

Quantization4

Storage

3

2

1

H columns H columns

Quantization
Noise Tuning

Capacitance
Noise Tuning

RedEye
Output

Figure 3: Convolutional column of the RedEye modules. A col-
umn of pixels is processed in a cyclic pipeline of convolutional
and max pooling operations.

RedEye provides a ConvNet programming interface that
allows developers to load ConvNet programs into the Red-
Eye program SRAM. To allow for changing task require-
ments, we also provide programmable noise admission
mechanisms that can be dynamically tuned to save energy
by allowing noisy operation. §III-C elaborates upon this.

To assist developers in designing RedEye programs, we
provide a simulation framework that estimates the task
performance and energy consumption of running a ConvNet
on the RedEye in its noisy analog environment. This allows
developers to optimize their RedEye programs and noise pa-
rameters for minimal energy consumption at sufficient task
accuracy. §III-D elaborates upon the simulation framework.

B. RedEye hardware architecture
While it is desirable to operate in the analog domain for

efficiency, circuit complexity limits depth of operation. We
focus on decisions that execute additional processing before
quantization while limiting design complexity.

1) Cyclic module reuse for deep execution: RedEye fea-
tures a novel design of cyclically-operated RedEye modules
for deep ConvNet execution. The design exploits the stack-
able structure of ConvNet layers to reuse RedEye modules
for ConvNet processing in the analog domain.

Of the four types of RedEye modules, enumerated in Fig-
ure 3, the convolutional and max pooling modules perform
the operations of neurons in a ConvNet layer. Meanwhile,
the storage module interfaces the captured or processed
signal data with the processing flow. Finally, the quantization
module exports the digital representation of the RedEye
ConvNet result. A flow control mechanism routes dataflow
through RedEye modules, skipping modules as necessary.

We next describe the design of each RedEye module, each
itself designed for reusability and programmability.

À Buffer module: RedEye samples filtered color pixels
and stores them to analog memory cells, prepared for the
first computational layer. The buffer module also receives
and stores intermediate results for further execution.

Á Convolutional module: The 3-D convolutional module
reads samples from the buffer module, performs multiplied
accumulation along vertical y and channel (e.g., color) z
axes with a weight kernel, and accumulates results horizon-
tally to columns on the x axis. The module clips signals at
maximum swing to perform nonlinear rectification.

Â Max pooling module: The max pooling module
identifies and propagates the maximum value in a local
vicinity. When local response normalization is required, the
convolutional module uses this sample to adjust convolu-
tional weights for the subsequent execution, equivalently
realizing the functionality of normalization.

Ã Quantization module: Used after the RedEye process-
ing is complete, the quantization module converts the output
features into a digital format and sends them into the digital
host system for further processing.

By reusing modules through multiple cycles of ConvNet
layer processing, RedEye can functionally perform deep
ConvNet processing with its limited complexity design.

2) Flow Control: RedEye controls the signal flow using
a synchronous digitally-clocked controller to simultaneously
pipe signal flow through multiple modules, skipping mod-
ules as necessary, as shown in the control plane of Figure 2.

The controller uses a set of flow control mechanisms to
route the signal for ConvNet processing. If the RedEye needs
to execute additional processing, the cyclic flow control
routes the output of the pooling module to the storage
module for intermediate storage. If any layer is unneeded

in a ConvNet dataflow, the bypass flow control of each
module (not pictured) provides an alternate signal route
to circumvent the corresponding module. For example, if
pooling is not required, the module can be skipped entirely.
This procedural design enables RedEye to operate multiple
layers of a ConvNet dataflow in the analog environment.

3) Column-based topology for data locality: To promote
data locality for kernel window operations, we organize
RedEye modules into a column-parallel design, as inspired
by conventional image sensors with column-wise readout
structure. As shown in Figure 2, this mitigates the complex-
ity of unbounded interconnect structures.

As introduced in §II-A, image sensors use column struc-
tures to operate multiple ADCs in parallel, reading one im-
age row at each timestep. Similarly, by adopting a column-
based topology, we advance the processing window by one
row at a time, controlled by a clocked timestep, allowing
multiple modules to simultaneously operate in parallel.

However, more importantly, because multiple columns
are synchronously processed, the input window of data
surrounding an element will be synchronously prepared for
execution. For vertical execution, data can be buffered as it
is generated; vertical access can be pipelined across different
timesteps. For horizontal access, RedEye needs only bridge
interconnects across horizontally-proximate columns. Thus,
the column-based topology allows for efficient data access
for kernel processing in horizontal and vertical directions.

We design RedEye with columns of modules as homoge-
neous subcomponents. This design pattern allows RedEye
to hierarchically reuse hardware design, thus enabling scal-
ability to focal-plane resolution, and promoting portability
and programmability.

C. ConvNet Programming Interface

A developer utilizes RedEye by writing a ConvNet pro-
gram to the RedEye program SRAM of the control plane,
and reading the results from the RedEye feature SRAM.
The ConvNet program includes the layer ordering, layer
dimensions, and convolutional kernel weights. RedEye uses
the digitally-clocked controller to load the program from
the SRAM into the cyclic signal flow, issuing the specified
kernel weights and noise parameters.

Thus, the developer is responsible for partitioning Conv-
Nets between RedEye operation and digital host system
operation. The decision of the cut influences the energy
consumption of the overall system. While a deeper cut
reduces the workload of the analog readout and of the host
system, it places more operation burden on the RedEye.

Programmable noise-admission: To allow developers
to tune the RedEye processing for energy efficiency, we
provide noise-admission mechanisms to trade signal fidelity
for energy efficiency. To control the mechanisms, developers
can specify the signal-to-noise ratio (SNR) for each layer.

Architecturally, RedEye uses the mechanisms to vary the
capacitance of a damping circuit in the operation modules.
This can be configured at runtime for each convolutional
module. By using variable noise-damping, detailed in §IV-A,
RedEye admits Gaussian noise in ConvNet module opera-
tions for energy savings. Similarly, RedEye uses a dynamic
quantization mechanism to adjust the ADC resolution of the
analog readout, thus scaling quantization noise.

As an alternative to noise damping, RedEye could use a
boosted analog supply voltage to increase signal swing, and
adjust signal gain accordingly to achieve higher SNR. This
approach is theoretically more efficient than noise damping;
however, in practice, this technique is sensitive to power
supply variations. As foundries generally do not guarantee
the transistor model to remain accurate when transistors
operate outside recommended voltage regions, it is a risk
that the actual circuit behavior may deviate from simulation.

Thus, we use capacitance-based noise-damping to allow
the developer can also make noise parameter decisions,
specifying the SNR of each convolutional module and quan-
tization module. A developer can load these noise parameters
into the RedEye SRAM alongside the ConvNet definition.

D. RedEye ConvNet simulation framework

Paramount to a developer’s ConvNet programming deci-
sions is a prediction of the accuracy and energy efficiency
of running a given ConvNet on RedEye. We provide a
simulation framework, taking in a developer’s partitioned
ConvNet and specified noise parameters and generating task
accuracy and energy estimations. The ConvNet structure of
the framework maps to a sequential execution of RedEye
modules. Here, we describe the construction of our frame-
work, using task simulation and circuit modeling.
Simulating noisy RedEye operation: Our simulation
modifies a ConvNet framework to analyze the effect of
noise admission on task accuracy and energy consumption.
Starting with ConvNet models designed for execution on
digital processors, we inject two types of noise layers
into the processing flow, representative of Gaussian and
quantization noise that invades the RedEye signal flow.

The Gaussian Noise Layer models noise inflicted by
data transactions and computational operations. We insert a
Gaussian Noise Layer to the output of each sampling layer,
convolutional layer and normalization layer. RedEye uses
the SNR to parametrize each Gaussian noise layer, allowing
the developer to tune the noise in the simulation.

The Quantization Noise Layer represents error introduced
at the circuit output by truncating to finite ADC resolution.
We model quantization noise as uniformly distributed noise
across the signal. We insert the quantization noise layer
where RedEye outputs the signal’s digital representation, and
use the ADC resolution (q) as a tunable input parameter.

Then, by using the framework to run input data through
the modified network, and applying an evaluation metric,

such as Top-N accuracy, we can simulate the effect of noise
admission on the ConvNet accuracy.
Estimating RedEye operational energy: We use circuit
models of RedEye modules to determine the energy con-
sumption incurred with parameters of Gaussian noise layers
EGauss.(SNR) and quantization noise layers Equant.(q),
estimating the energy consumed by the analog operations.

As introduced in §II-B, decreased noise admission in-
creases the task accuracy, but also increases operational en-
ergy consumption. Developers should search for an optimal
set of parameters that achieves task accuracy at minimal cost.
In general, this is an intensive search over a parameter space
of dimension <n+1 for n Gaussian layers and 1 quantization
layer. Such highly dimensional searches would typically
require tools such as the canonical simplex search [21].
However, for GoogLeNet processing, our evaluation reveals
that we can accept as much Gaussian noise as each analog
operation can admit (SNR > 40 dB). The problem, then,
reduces to a single parameter selection, selecting an energy-
optimal quantization q to balance accuracy and energy.
Framework implementation: To model convolutional
vision tasks, we design our functional algorithmic simulation
by adapting the Caffe neural network framework, written in
Python and C++. Slight modifications to the Caffe source
code allow us to add layers to simulate and optimize analog
noise tradeoffs. We implement Gaussian and uniform noise
layers by adding 191 lines of C++ code to the Caffe
framework. Our Python framework consists of 2000 lines
of code to set up ConvNets with injected noise layers. We
use Cadence Spectre to generate noise-energy models of the
operational layers of the ConvNet, based on the circuits in
§IV. This provides a model of energy consumption under a
given set of noise parameters.

IV. REDEYE CIRCUIT DESIGN

We next present the RedEye circuit design. Our circuit not
only validates the efficacy of our modular column-parallel
design, but also structurally defines a behavioral circuit
model to study signal fidelity and energy consumption. This
model guides the simulation framework in §III-D.

A. Analog module design

We design transistor-level circuitry of analog RedEye
modules in IBM 0.18-µm CMOS process. Given the effi-
ciency and process constraints, we assume an SNR range of
40–60 dB, proven to be sufficient for our evaluation results.
Convolution: RedEye convolutional layers perform 3-D
convolutions in two steps, as shown in Figure 3: weighted
averaging on y-axis, and accumulation on x and z. We
design a multiply-accumulate unit (MAC, Figure 4). As
weights must be stored in digital form for long-term fidelity,
they must cross the A/D boundary to interact with analog
signals. In order to facilitate mixed-signal multiplication, we
derive our design from switched-capacitor amplifiers.

For efficient digital-to-analog conversion, tunable capaci-
tors are crucial for accuracy and efficiency in applying kernel
weights to signal values. Through experimental validation,
we find that our ConvNet tasks can use 8-bit fixed-point
weights with accurate operation. To efficiently implement
such weights, we design a charge-sharing based tunable
capacitor, shown in Figure 5, to maximize energy savings.

The 8-bit tunable capacitor operates as follows:

1) Sample input signal onto Cj for which bj = 1 (8 ≥
j ≥ 1), where bj is the j-th bit of the weight. Ground
other Cj capacitors;

2) Activate φD switches to share signal charge on each
Cj with additional (28−j − 1) C0 capacitors;

3) Combine charge of all Cj to obtain weighted signal.

This design reduces the number of MAC sampling capacitors
from O(2n) (the naı̈ve design) to O(n). This proportionally
reduces input capacitance and energy consumption, as C0

itself cannot shrink further due to process constraints. For
the 8-bit MAC, this reduces energy by a factor of 32.

We enhance the versatility of RedEye by designing a
dynamic noise damping mechanism, so that the fidelity of
the convolutional layer can adapt to different tasks. At the
output of MAC, a tunable capacitor adjusts the total load
capacitance to trade thermal noise for energy efficiency.
Max pooling: The max pooling layer uses a straightforward
algorithm to find the maximum local response max:

1) Convert all responses to absolute values;
2) Serially compare each absolute response with max,

and preserve the larger value by assigning it to max;
3) Repeat (2) to traverse the entire localized window.

We design a fully dynamic comparator to eliminate static
steering current, achieving zero idle power consumption.
Dynamic comparators typically suffer from energy wastage
when metastability occurs; the comparator requires long
decision times and maximum current when the difference in
inputs is small. We suppress this effect by forcing arbitrary
decisions when the comparator fails to deliver a result in
time. This mechanism works without introducing tangible
error in pooling results, as confirmed by task simulation.
Quantization: As introduced in §II-B, variable ADC reso-
lution trades bitdepth for energy efficiency. Our SAR ADC
design achieves variable resolution by skipping bit cycles
and cutting off corresponding capacitors. This mechanism
is explained as follows. Significance of bit bi is defined by
the weight of the corresponding capacitor Ci with respect
to the total active capacitance of the n-bit array:

w{bi} =
Ci

CΣ
=

2i−1C0

[
∑n

k=1 Ck] + C0
=

1

2n−i+1

In our 10-bit SAR ADC design, when all bits are active,
the weight of the most significant bit (MSB) b10 is 1/2;
the next bit b9 has a weight of 1/4. When ADC resolution

output

][][iwich

weights

..
.input

rst

fC

]8[ch

]2[ch

]1[ch
]1[w

]2[w

]8[w

damp

Figure 4: 8-input mixed-signal MAC (conceptual). Tunable
capacitors apply digital weights w[:] on analog inputs ch[:].
φrst clears Cf after each kernel window is processed.

input

to op amp

...

]1[]2[]7[]8[
D D D

8C

063C0127C 0C

7C2C1C

Figure 5: Tunable capacitor design. Digital weights w[:] control
the input-side switches φ[:] while sampling. C1 to C8 are
identically sized to C0.

decreases by 1, C10 is cut away from the capacitor array,
halving the value of CΣ; Meanwhile, b9 becomes MSB, with
its weight automatically promoted to 1/2. As a result, this
mechanism conserves signal range, and allows for straight-
forward bit-depth alignment with digital zero padding.

B. Behavioral circuit model

To assist the framework of §III-D by promoting simulation
efficiency and preserving simulation accuracy, we derive a
parameterized behavioral model from RedEye’s circuit sim-
ulation. We extract model parameters of key building blocks
from transistor-level simulation using Cadence Spectre.

While a full transistor-level mixed-signal simulation
would provide robust precision, running signal flows through
such a process would be prohibitively time-consuming.
Hence, we use behavioral simulation to model fidelity char-
acteristics and energy proportionality of the signal flow.

Aside from verification purposes, we use this behavioral
model to describe the energy consumption as a function of
noise in each circuit stage and network layer. These energy-
noise functions guide the energy estimation function of the
simulation framework of §III-D.
Structurally-guided circuit model: We use structural
circuit models to design our behavioral model. Top-level
elements of convolution, max pooling and quantization
layers are composed of sub-layer circuit modules, such
as analog memory, MAC and ADC. These modules are
further dissected into internal units such as tunable ca-
pacitors, op amps and comparators. Each internal unit is
simulated at transistor level so that circuit behavior, most
importantly energy consumption and noise performance, can
be precisely modeled. The energy and noise characteristics
propagate upwards to assess the system-wide energy and
noise statistics, allowing for fine-grained optimization in
circuit design. Furthermore, as the model fully reproduces
the signal flow with identical organization and operation of
functional circuit elements, it confirms system functionality.
Model parameters: In the behavioral model, the energy
consumption and noise contribution of each module are
determined by a set of noise, power and timing parameters.

Noise parameters represent the noise performance of the
circuit, including sampling noise from switches, op amp
noise in signal buffers and amplifiers, comparator noise, and
quantization noise. For sampling noise, as the thermal noise

power density of transistor switches (4γkTR) deviates from
that of an ideal insulator by a factor of γ, we simulate the
actual noise in a sample-and-hold circuit and use it as a noise
parameter. For op amp, we measure the output noise power
and refer it to the input, so that the noise parameter remains
valid with variable gain settings (i.e., weight values). For
ADC with n-bit resolution, we assume its noise contribution
is identical to the quantization noise of an ideal m-bit ADC,
where m equals the simulated ENOB of the n-bit ADC.

Power parameters account for both static and dynamic
power consumption. Static power includes bias current of op
amps and leakage in digital circuits. Dynamic power is in-
troduced by comparators when they make decisions or reset
to initial state, capacitors when they are being charged, and
digital elements when their state flips (e.g., programmable
weight distribution). Both noise and power parameters are
extracted from circuit simulation. For components with
highly dynamic, input-dependent characteristics, we average
the power consumption over a relatively long period (e.g.
200 cycles), using their means as power parameters.

Timing parameters refer to the time slots allocated to
circuit operations. In switched-capacitor circuits (e.g. MAC),
output signals require a certain amount of time to settle be-
fore they can be used by subsequent stages. As components
consuming static current ought to be aggressively power-
gated, it is essential to choose timing parameters properly.
Timing parameters work with power parameters, which de-
fine the bandwidth of op amps, to report energy consumption
as well as output signal inaccuracy from insufficient settling.
Model verification: Our approach of circuit simulation is
similar to that of [9]. We build transistor-level schematics for
key building blocks including MAC, comparator and ADC
using IBM 0.18-µm process, and run Spectre simulations to
verify circuit functionality and performance.

As we use circuit simulation to verify a major portion of
parameters of the behavioral model, it is critical to reliably
configure simulation settings. For time-domain simulations,
we set accuracy defaults (errpreset) to conservative, which
implies lower error tolerances, i.e., higher simulation ac-
curacy (relative tolerance is 0.01%; absolute tolerances are
1 µV and 1 pA). For performance-critical components, e.g.,
op amp and comparator, we simulate over five process cor-
ners (TT 27◦C, FF−20◦C, SS 80◦C, FS 27◦C and SF 27◦C)
in order to ensure that variations of circuit characteristics

C P C PC

P

C

C

C

C

C

C

Input P

P

C

C

C

C

C

C

P

P

C

C

C

C

C

C

P Output

Depth2
Depth3

Depth4
Depth5

Depth1

Figure 6: GoogLeNet partitions for evaluation, where C and P
are RedEye convolutional and pooling operations.

remain acceptable in all reasonable fabrication scenarios and
operating environments. This simulation strategy guarantees
the provision for process and temperature variations, which
affirms our confidence of the circuit design.

V. EVALUATION

We investigate the utility of RedEye in performing ana-
log convolutional processing for continuous mobile vision.
We find that RedEye reduces sensing energy consumption
by 84.5%. The reduction primarily comes from readout
workload reduction. RedEye also assists mobile CPU/GPU
systems by replacing the image sensor, nearly halving the
system energy consumption by moving convolutional pro-
cessing from the digital domain in the analog domain.

We also study the influence of noise on RedEye, eval-
uating our insight of using noise to minimize energy with
sufficient task accuracy. Finally, we evaluate RedEye in the
context of circuit design structures, studying the effect of
our architectural decisions upon analog design complexity.

A. Evaluation methodology

To evaluate RedEye task accuracy and energy consump-
tion, we use the simulation framework introduced in §III-D.

Task – Classification of ImageNet data: For our task,
we study image classification, in which an image label is
predicted with a degree of confidence. The ImageNet Large
Scale Visual Recognition Challenge provides datasets of
images, each image labeled with 1 of 1000 classes. These
images include a labeled validation set of 50,000 images.

To simulate raw image sampling, we undo gamma cor-
rection to simulate raw pixel values. We emulate photodiode
noise and other analog sampling effects by applying Poisson
noise and fixed pattern noise in the input layer.

To measure classification performance, we run our frame-
work on all validation images. We use the Top-5 metric to
quantify task accuracy, counting the proportion of images for
which the ground truth label is one of the top 5 predictions.

Evaluated ConvNets: We evaluate RedEye on the Goog-
LeNet ConvNet [22], with weights digitized to 8-bit values.
We also evaluate RedEye on AlexNet [19] with similar
findings, but for brevity, only present GoogLeNet results.

We partition GoogLeNet at 5 different depths, as shown
in Figure 6, to evaluate deeper RedEye processing. Because
GoogLeNet branches to a classifier layer after Depth5, our
design is unable to execute further than the first 5 layers.

RedEye processes convolutional and pooling operations
before the depth cut, leaving the remainder to be run on
the host system. When configured, as in §V-C, we find
Depth1 to consume the least RedEye energy per frame.
While the readout cost decreases with deeper depth cuts,
this is outpaced by processing costs, as shown in Figure 7a,
leading to an increase in RedEye energy consumption with
deeper operation. However, we find Depth5 to be the energy-
optimal configuration when RedEye is combined with a host
system, due to RedEye’s substantial workload assistance in
addition to a quantization energy reduction.

B. RedEye energy and timing performance
We evaluate RedEye against CMOS image sensors and in

various system contexts to study its practicality for vision
processing in mobile systems. We find that RedEye reduces
analog sensor energy consumption by 84.5%, cloudlet-based
system energy consumption by 73%, and computational-
based system energy consumption by 45%. By pipelining
RedEye with computations on the digital system, the Depth5
RedEye can operate at up to 30 frames per second (fps).
RedEye sensor vs. image sensor: Typical systems use
an image sensor to capture frames. We find that RedEye
performs favorably when comparing energy and timing
performance against CMOS image sensors. Both sensors
can use a low-power microcontroller for digital interface,
consuming 0.4 mJ per frame. For comparison, we ignore
the digital footprint, comparing analog performance alone.

To model quantization overhead, we model a 10-bit
227× 227 color image sensor, sampling at 30 fps. Using a
recent survey [13] to reference state-of-the-art ADC energy
consumption, we conservatively estimate the analog portion
of the image sensor to consume 1.1 mJ per frame.

By comparison, the processing and quantization of Depth1
on RedEye consumes 170 µJ per frame. This presents an
84.5% sensor energy reduction. RedEye achieves this reduc-
tion through noise admission, especially during analog read-
out; as shown in Figure 7c, 4-bit RedEye operation reduces
output data size to nearly half of the image sensor’s data
size. We chart energy consumption, timing performance,
and quantization workload of different depth configurations
compared against the modeled image sensor in Figure 7.
RedEye with cloudlet-offload: Systems may offload
computations to a nearby server to perform energy-expensive
and computationally-intensive operations, i.e., cloudlet pro-
cessing. While this negates the energy consumption of com-
putations, the device energy consumption is then dominated
by network transmission. As RedEye reduces the size of the
output data representation, RedEye substantially reduces the
energy expended during transmission by 74%.

0.01

0.1

1.0

10.0

IS1 2 3 4 5

S
en

so
r

A
na

lo
g

E
ne

rg
y

(m
J)

Depth

Quant.

Proc.

(a) Energy

0

10

20

30

40

IS 1 2 3 4 5

T
im

in
g

(m
s)

Depth

(b) Timing

0.0

0.5

1.0

1.5

2.0

IS1 2 3 4 5

O
ut

pu
t S

iz
e

(M
bi

ts
/fr

am
e)

Depth

(c) Output Size

Figure 7: Performance metrics of image sensor (IS) and 4-bit,
40 dB RedEye at different depths. Energy on a log scale.

 0

 0.5

 1

 1.5

 2

Without
 RedEye

1 2 3 4 5

E
n
e
rg

y
 (

J
)â

��

Depth

Jetson TK1 CPU
Jetson TK1 GPU

Cloud offload

Figure 8: Per-Frame Energy Consumption on NVIDIA Jetson
TK1 CPU, Jetson TK1 GPU, and cloud-offload with and
without RedEye.

Using a characterization of Bluetooth Low-Energy power
and latency [23], we find that conventionally exporting a
227x227 frame will consume 129.42 mJ over 1.54 seconds,
in addition to the 1.1 mJ consumed by image sensor capture.
Meanwhile, RedEye Depth4 output only consumes 33.7 mJ
per frame, over 0.40 seconds. Including a RedEye overhead
of 1.3 mJ per frame, RedEye saves 73.2% of system energy
consumption for locally-offloaded execution.
RedEye with CPU/GPU execution: RedEye also demon-
strates efficiency advantages when paired with a Jetson TK1
digital host system, as illustrated in Figure 8. While the
Jetson provides best-in-class mobile ConvNet performance
and efficiency, RedEye reduces its energy consumption by
reducing its workload. RedEye also increases CPU classifi-
cation speed, while keeping GPU classification speed.

Executing GoogLeNet with Caffe on the Jetson GPU
paired with an image sensor consumes 12.2 W over 33 ms,
for 406 mJ per frame, as measured through oscilloscope.
Likewise, using the Jetson CPU, the Caffe framework re-
quires 3.1 W over 545 ms, for 1.7 J per frame.

In comparison, using the Depth5 RedEye reduces the
Jetson processing time for the GPU to 18.6 ms, and for the
CPU to 297 ms. This results in a system energy reduction
down to 226 mJ with the GPU, and 892 mJ with the CPU.

As the Depth5 RedEye can be pipelined with CPU and
GPU operation, it reduces the processing time to the min-
imum of the RedEye and the digital operation. RedEye is
not the limiting factor in either case, requiring only 32 ms.
RedEye accelerates execution for the CPU from 1.83 fps to
3.36 fps and maintains GPU timing, i.e., “real-time” 30 fps.

Thus, paired with the GPU and CPU, using RedEye can
save 44.3% and 45.6% of the energy per frame, respectively.
System energy consumption is dominated by the energy-
expensive GPU/CPU for executing ConvNet layers.
RedEye with hardware acceleration: To compare against
specialized digital hardware acceleration, we compare the
execution of the RedEye circuit against cited timing and

energy statistics of the ShiDianNao neural network acceler-
ator. We find that RedEye computing efficiency reduces the
system overhead through analog readout reduction.

For comparison purposes, we consider the 7-layer Conv-
Nets (3 convolution layers), implemented in the ShiDianNao
work, and estimate performance on a 227×227 color frame.
Specifically, we use 144 instances of the authors’ 64 × 30
patch, with a stride of 16 pixels in the 227 × 227 region,
for 2.18 mJ of energy consumption per frame. Including the
image sensor, this consumes over 3.2 mJ per frame.

In comparison, when performing 7 layers of convolutions
in a Depth4 configuration, RedEye consumes 1.3 mJ per
frame. Thus, system energy consumption is reduced by 59%,
due to the reduced readout energy consumption.

C. Noise vs. task accuracy, depth, and energy

We next evaluate the importance of controlling noise to
minimize energy. We find we can admit a substantial amount
of noise in the convolution operations, which is useful for
trading signal fidelity for energy efficiency of quantization.

GoogLeNet task accuracy is robust against the 40–60 dB
SNR range expected by RedEye. This is shown in Figure 9,
wherein Gaussian noise is introduced to reduce the SNR
and accumulated in all data layers, convolutional modules,
and pooling modules. Increasing the Gaussian noise through
the effective range of potential standard deviations does not
effect significant task failure, reporting 89% Top-5 even at
the lower SNR limit of 40 dB. Hence, the system should
always choose 40 dB for energy efficiency; overprovisioning
for low-noise incurs substantial energy consumption relative
to the energy consumption corresponding to reduced SNR.

On the other hand, when scanning ADC resolution at a
fixed Gaussian noise of 40 dB, we find a sizable accuracy-
energy tradeoff in the effective region of quantization scal-
ing, as shown in Figure 10. While using several bits allows
robust task accuracy, the accuracy decreases as the RedEye

Top 5 Accuracy Energy

Depth1 Depth2 Depth3 Depth4 Depth5

0

20

40

60

80

100

10 20 30 40 50 60

-7

-6

-5

-4

-3

-2

-1

0

RedEye noise range

G
o
o
g
L
e
N

e
t
A

c
c
u
ra

c
y
 (

%
)

lo
g

1
0
 [
 P

ro
c
.
E

n
e
rg

y
 (

J
)

]

Processing Noise SNR (dB)

Figure 9: Accuracy (dashed) and Energy of ConvNet processing
(solid) vs. Gaussian SNR of GoogLeNet running on RedEye at
4-bit quantization. Accuracy over N = 2500.

Top 5 Accuracy Energy

Depth1 Depth2 Depth3 Depth4 Depth5

0

20

40

60

80

100

10 20 30 40 50

-7

-6

-5

-4

-3

-2

-1

0

3-bit 5-bit 7-bit

G
o
o
g
L
e
N

e
t
A

c
c
u
ra

c
y
 (

%
)

lo
g

1
0
 [
 Q

u
a
n
t.
 E

n
e
rg

y
 (

J
)

]

Quantization Noise SNR (dB)

Figure 10: Accuracy (dashed) and Energy of Quantization
(solid) vs. quantization SNR of GoogLeNet running on RedEye
at Gaussian SNR = 40 dB. Accuracy over N = 2500.

Table I: RedEye operation modes and energy consumption for
Depth5

Modes SNR Cap. size Energy/frame
High-efficiency 40 dB 10 fF 1.4 mJ

Moderate 50 dB 100 fF 14 mJ
High-fidelity 60 dB 1 pF 140 mJ

uses fewer bits. However, from the range of 4–6 bits, all
depth configurations operate with similarly high accuracy.

Choosing an optimal depth configuration depends on the
energy consumption of the digital host system. For an
energy-expensive host system, deeper depth configurations
will reduce expensive digital processing; we find that when
paired with a Jetson TK1, the most efficient configuration is
Depth5. However, for an energy-inexpensive host, RedEye
can operate shallower networks, such as Depth1 or Depth2
to alleviate analog readout with low processing energy.

D. Simulated RedEye circuit characteristics

We evaluate RedEye efficiency by simulating analog
energy consumption and estimating the energy consumed by
the on-chip microcontroller using state-of-the-art models.

RedEye can be configured for different fidelity by con-
figuring noise-damping capacitance (Table I). In high-
efficiency (40 dB SNR) mode, RedEye’s analog circuitry
uses 1.4 mJ to process a 227 × 227 color image through
Depth5 at 30-fps, based on simulation results.

With a central clock frequency of 250 MHz for the 30-fps
frame rate, we estimate that the Cortex-M0+ consumes an
additional 12 mW, based on its power-frequency ratio (47.4
µW/MHz) fabricated in 0.18-µm process.

In order to understand RedEye’s design footprint, we
estimate the silicon area using the sizes of unit circuit
components, multiplied by the number of components on
chip. Each column slice is estimated to occupy 0.225 mm2,
with a low interconnect complexity of 23 per column. In
addition, RedEye requires 100-kB memory to store features
and 9-kB for kernels, which fit within the 128-kB on-chip

SRAM. In total, RedEye components amount to a die size
of 10.2× 5.0 mm2, including the 0.5× 7 mm2 customized
on-chip microcontroller and the 4.5× 4.5 mm2 pixel array.

1) Opportunities from technology advancements: As
semiconductor technology advances, RedEye will face new
challenges and opportunities. In contrast with digital circuits,
which possess performance and efficiency benefits from
technology scaling, analog circuits only receive marginal im-
provements. This is mainly due to signal swing constraints,
short-channel effects and well proximity effects. However,
advanced analog processes allow RedEye to explore low-
SNR regions for reduced energy cost-per-operation. Further-
more, RedEye is ideal for 3D stacking; pages of analog
memory can be physically layered, reducing die size.

In addition, stacked RedEyes could be programmed with
different tasks (e.g., face recognition, HOG, object classifi-
cation, etc.), to coexist on the same module and operate in
parallel. Finally, conventional image processing architecture
could occupy a layer, allowing a device to acquire a full
image through RedEye’s optical focal plane when needed.

VI. RELATED WORK

Image sensor energy optimization: Choi et al. survey
power saving techniques, including voltage scaling, in-pixel
A/D conversion, small pixel sizes and suppressing switching
operations in [6]. The effectiveness of these techniques
is limited; voltage scaling reduces signal swing, requiring
higher power to maintain the SNR, as shown in [24]. In-
pixel A/D and small-sized pixels reduce pixel fill factor
due to process constraints. Finally, implementation-specific
techniques, e.g., suppressing switching, subject their effec-
tiveness to circuit functionality and behavior, and cannot
generalize to the wide array of analog readout architectures.

Limited-precision computing: Works in approximate
computing [9], [25]–[27] are especially related, utilizing
efficiency-performance tradeoffs. These approaches target
computation energy, while our work focuses on reducing

sensor readout and memory transaction overheads, especially
when paired with specialized hardware or cloud offloading.

Many works share our strategy of analog efficiency in
the design of limited-precision analog neural accelerators
[9], [28], [29]. Towards assisting generic computing at low
noise, each of these designs apply only a single layer of
analog neurons per conversion, using a digital interface
to support generic computing. Though readout energy is
significant, limiting the benefit of analog computing, this
is necessary overhead to support high-fidelity inter-neuron
communications across the analog-digital barrier. ISAAC
[29] uses in-situ crossbar pipelines and efficient “flipped”
weight encodings, reducing the static and dynamic power
consumption of analog-digital conversion.

As RedEye does not need to support generic computing,
our contributions revolve around cyclic computing in the
analog domain, despite accumulating noise and increasing
complexity. This eliminates system data transactions by
constraining inter-neuron signal flow to the analog domain;
only one crossing at the analog-digital boundary is needed
for the entirety of the pipeline.

Hardware ConvNet acceleration: Many convolutional
architectures are focused on reconfigurable flexibility [30]–
[32]. Improving upon these, some accelerators exploit data
locality for performance and efficiency of ConvNet process-
ing [33]–[35]. These accelerators reduce data accesses and
data copies, increasing energy efficiency. To further reduce
data traffic, the ShiDianNao co-processor [36] streams raw
data directly from the sensor. This brings processing closer
to the sensor; we similarly push computation into the sensor,
before analog readout, to reduce data and readout overhead.

In-sensor processing: Focal-plane compression [37], in-
imager convolution [38], and programmable in-imager oper-
ation [39] enable certain low-power functionality in the im-
age sensor. Bounded by complexity and noise, these designs
perform small chains of specific filtering. By contrast, as we
approach the problem of deep ConvNet support, we employ
reusable module design and noise tuning to efficiently op-
erate many layers of operation before quantization.

VII. CONCLUDING REMARKS

In this paper, we present the system and circuit designs of
RedEye, moving ConvNet processing into an image sensor’s
analog domain to reduce analog readout and computational
burden. Because RedEye allows developers to trade signal
fidelity for energy, we report a simulation framework to
assist them in balancing accuracy and efficiency. With a per-
frame sensor energy reduction of 84.5%, cloudlet system
energy reduction of 73%, and computational system energy
reduction of 45%, RedEye advances towards overcoming the
energy-efficiency barrier to continuous mobile vision.

While we design and simulate RedEye energy, noise, and
timing performance, we do not yet provide a circuit layout

of the RedEye architecture. Thus, we have not accounted for
layout issues including parasitics, signal crosstalk, or com-
ponent mismatch. We also plan to investigate the following:

Situational uses for noise scaling: As shown in §V-C,
GoogLeNet is robust to noise, only susceptible to signal
infidelity when SNR drops below 30 dB. However, sensors
may experience noise not represented in the ImageNet
dataset: using RedEye in a 1 lux environment would reduce
the lower limit of the RedEye SNR range to 25 dB. Dynam-
ically scaling RedEye noise enables operation in poorly lit
environments, at the cost of higher energy consumption.

Privacy of continuous mobile vision: While we were
motivated by the fundamental physical barrier to continuous
mobile vision, i.e., energy efficiency, RedEye also provides a
platform to explore a novel approach toward the fundamental
social barrier: privacy. Using techniques such as [40] to
generate a quantified reconstruction error, we can train a
ConvNet to guarantee image irreversibility. Processing such
a ConvNet in the analog domain and discarding the raw
image would provide a strong privacy guarantee to the user.

RedEye-specific ConvNet: Current ConvNets have been
designed for digital architectures, with plentiful memory and
floating point operations. We plan to investigate the training
of a ConvNet specific to the RedEye architecture, aware of
the efficiency and infidelity tradeoffs of the analog domain.

ACKNOWLEDGMENTS

The authors thank Prof. Gene Frantz for input throughout
the project. Prof. Boris Murmann provided useful feedback
on an early version of the draft. The authors are grateful
for comments made by anonymous reviewers. This work
was supported in part by NSF Awards CNS #1054693,
CNS #1218041, and CNS #1422312. Robert LiKamWa was
supported by a Texas Instruments Graduate Fellowship.

REFERENCES

[1] P. Bahl, M. Philipose, and L. Zhong, “Vision: cloud-powered
sight for all: showing the cloud what you see,” in Proc. ACM
Wrkshp. Mobile Cloud Computing & Services (MCCS), 2012.

[2] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satya-
narayanan, “Towards wearable cognitive assistance,” in Proc.
ACM Int. Conf. Mobile Systems, Applications, & Services
(MobiSys), 2014.

[3] R. LiKamWa, Z. Wang, A. Carroll, X. Lin, and L. Zhong,
“Draining our Glass: an energy and heat characterization
of Google Glass,” in Proc. ACM Asia-Pacific Wrkshp. on
Systems (APSys), 2014.

[4] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and
P. Bahl, “Energy characterization and optimization of image
sensing toward continuous mobile vision,” in Proc. ACM Int.
Conf. Mobile Systems, Applications, & Services (MobiSys),
2013.

[5] K. Kitamura, T. Watabe, T. Sawamoto, T. Kosugi, T. Akahori,
T. Iida, K. Isobe, T. Watanabe, H. Shimamoto, H. Ohtake
et al., “A 33-Megapixel 120-frames-per-second 2.5-Watt
CMOS image sensor with column-parallel two-stage cyclic
analog-to-digital converters,” IEEE Transactions on Electron
Devices, no. 12, pp. 3426–3433, 2012.

[6] J. Choi, S. Park, J. Cho, and E. Yoon, “An
energy/illumination-adaptive CMOS image sensor with
reconfigurable modes of operations,” IEEE Journal of
Solid-State Circuits, no. 6, 2015.

[7] I. Takayanagi, M. Shirakawa, K. Mitani, M. Sugawara,
S. Iversen, J. Moholt, J. Nakamura, and E. R. Fossum,
“A 1.25-inch 60-frames/s 8.3-M-pixel digital-output CMOS
image sensor,” IEEE Journal of Solid-State Circuits, no. 11,
2005.

[8] W. Hu, B. Amos, Z. Chen, K. Ha, W. Richter, P. Pillai,
B. Gilbert, J. Harkes, and M. Satyanarayanan, “The case for
offload shaping,” in Proc. ACM Wrkshp. Mobile Computing
Systems & Applications (HotMobile), 2015.

[9] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Es-
maeilzadeh, A. Hassibi, L. Ceze, and D. Burger, “General-
purpose code acceleration with limited-precision analog com-
putation,” in Proc. ACM/IEEE Int. Symp. Computer Architec-
ture (ISCA), 2014.

[10] B. Murmann, “A/D converter trends: Power dissipation,
scaling and digitally assisted architectures,” in Proc. IEEE
Custom Integrated Circuits Conf. (CICC), 2008.

[11] J. Mahattanakul and J. Chutichatuporn, “Design procedure for
two-stage CMOS Opamp with flexible noise-power balancing
scheme,” IEEE Transactions on Circuits and Systems I:
Regular Papers, pp. 1508–1514, August 2005.

[12] R. Sarpeshkar, T. Delbruck, C. Mead et al., “White noise in
MOS transistors and resistors,” IEEE Circuits and Devices
Magazine, vol. 9, no. 6, 1993.

[13] B. Murmann. ADC performance survey 1997-2015. [Online].
Available: http://web.stanford.edu/\∼murmann/adcsurvey.htm

[14] P. Harpe, E. Cantatore, and A. van Roermund, “A 2.2/2.7
fj/conversion-step 10/12b 40kS/s SAR ADC with data-driven
noise reduction,” in Digest IEEE Int. Solid-State Circuits
Conf. (ISSCC), 2013.

[15] B. Murmann, “Energy limits in A/D converters,” in IEEE
Faible Tension Faible Consommation (FTFC), 2013, pp. 1–4.

[16] N. Verma and A. P. Chandrakasan, “An ultra low energy
12-bit rate-resolution scalable SAR ADC for wireless sensor
nodes,” IEEE Journal of Solid-State Circuits, vol. 42, no. 6,
2007.

[17] M. Yip and A. P. Chandrakasan, “A resolution-reconfigurable
5-to-10b 0.4-to-1V power scalable SAR ADC,” in Digest
IEEE Int. Solid-State Circuits Conf. (ISSCC), 2011.

[18] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional
networks and applications in vision,” in Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS), 2010.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems (NIPS),
2012.

[20] A. B. Patel, T. Nguyen, and R. G. Baraniuk, “A probabilistic
theory of deep learning,” arXiv preprint arXiv:1504.00641,
2015.

[21] G. B. Dantzig, A. Orden, P. Wolfe et al., “The generalized
simplex method for minimizing a linear form under linear
inequality restraints,” Pacific Journal of Mathematics, no. 2,
pp. 183–195, 1955.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” arXiv preprint arXiv:1409.4842, 2014.

[23] M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen,
“How low energy is bluetooth low energy? comparative
measurements with zigbee/802.15.4,” in Proc. IEEE Wire-
less Communications and Networking Conference Workshops
(WCNCW), 2012.

[24] H.-S. Wong, “Technology and device scaling considerations
for CMOS imagers,” IEEE Transactions on Electron Devices,
vol. 43, no. 12, pp. 2131–2142, 1996.

[25] R. S. Amant, D. A. Jiménez, and D. Burger, “Mixed-signal
approximate computation: A neural predictor case study,”
IEEE Micro, no. 1, 2009.

[26] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neu-
ral acceleration for general-purpose approximate programs,”
in Proc. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
2012.

[27] Z. Du, A. Lingamneni, Y. Chen, K. Palem, O. Temam,
and C. Wu, “Leveraging the error resilience of machine-
learning applications for designing highly energy efficient
accelerators,” in Proc. IEEE Asia and South Pacific Design
Automation Conference (ASP-DAC), 2014.

[28] B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Con-
tinuous real-world inputs can open up alternative accelerator
designs,” in ACM SIGARCH Computer Architecture News,
vol. 41, no. 3. ACM, 2013, pp. 1–12.

[29] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and T. . I. Y. . .
Srikumar, Vivek Booktitle = Proceedings of ACM/IEEE Int.
Symp. Computer Architecture (ISCA).

[30] P. H. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun,
and E. Culurciello, “NeuFlow: Dataflow vision processing
system-on-a-chip,” in Proc. IEEE Midwest Symp. Circuits and
Systems, 2012.

[31] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim,
and L. Benini, “Origami: A convolutional network accelera-
tor,” in Proc. ACM Great Lakes Symp. VLSI, 2015.

[32] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi,
“A dynamically configurable coprocessor for convolutional
neural networks,” in ACM SIGARCH Computer Architecture
News, no. 3, 2010, pp. 247–257.

[33] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,
C. Kozyrakis, and M. A. Horowitz, “Convolution engine:
balancing efficiency & flexibility in specialized computing,”
in ACM SIGARCH Computer Architecture News, vol. 41,
no. 3, 2013, pp. 24–35.

[34] M. Peemen, A. a. a. Setio, B. Mesman, and H. Corporaal,
“Memory-centric accelerator design for convolutional neural
networks,” in Proc. IEEE Int. Conf. Computer Design, 2013.

[35] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “DianNao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in Proc. ACM
Int. Conf. Architectural Support for Programming Languages
& Operating Systems (ASPLOS), 2014.

[36] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, X. Feng,
Y. Chen, and O. Temam, “ShiDianNao: Shifting vision pro-
cessing closer to the sensor,” in Proc. ACM/IEEE Int. Symp.
Computer Architecture (ISCA), 2015.

[37] W. D. León-Salas, S. Balkir, K. Sayood, N. Schemm, and
M. W. Hoffman, “A CMOS imager with focal plane com-
pression using predictive coding,” IEEE Journal of Solid-State
Circuits, no. 11, 2007.

[38] A. Nilchi, J. Aziz, and R. Genov, “Focal-plane
algorithmically-multiplying CMOS computational image
sensor,” IEEE Journal of Solid-State Circuits, vol. 44, no. 6,
2009.

[39] P. Hasler, “Low-power programmable signal processing,”
in Proc. IEEE Int. Wrkshp. System-on-Chip for Real-Time
Applications, 2005.

[40] A. Mahendran and A. Vedaldi, “Understanding deep image
representations by inverting them,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), June 2015.

