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ABSTRACT

Emerging wearable devices promise a multitude of computer vision-
based applications that serve users without active engagement. How-
ever, vision algorithms are known to be resource-hungry; and mod-
ern mobile systems do not support concurrent application use of
the camera. Toward supporting efficient concurrency of vision ap-
plications, we report Starfish, a split-process execution system that
supports concurrent vision applications by allowing them to share
computation and memory objects in a secure and efficient manner.
Starfish splits the vision library from an application into a separate
process, called the Core, which centrally serves all vision applica-
tions. The Core shares library call results among applications, elim-
inating redundant computation and memory use. Starfish supports
unmodified applications and unmodified libraries without needing
their source code, and guarantees correctness to the applications.
In doing so, Starfish improves both the performance and energy
efficiency of concurrent vision applications. Using a prototype im-
plementation on Google Glass, we experimentally demonstrate that
Starfish reduces the time spent processing repeated vision library
calls by 71% — 97%. When running two to ten concurrent face
recognition applications at 0.3 frames per second, Starfish reduces
CPU utilization by more than 42% — 80%. Notably, this keeps
CPU utilization below 13%, even as the number of applications in-
creases. This reduces system power consumption by 19% — 58%,
as Starfish maintains a power consumption at approximately 1210
mW while running the concurrent application workloads.

Categories and Subject Descriptors

1.4.m [Image Processing and Computer Vision]: Miscellaneous;
D.0 [Software]: General
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Computer vision; vision library; mobile computing; memoization

1. INTRODUCTION

In our envisioned future of continuous mobile vision [3], multi-
ple vision applications continuously and concurrently run on mo-
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bile devices, analyzing camera frames to understand its environ-
ment without active user engagement, e.g., [12, 25]. A wearable
device could simultaneously recognize faces to log social interac-
tions, and detecting food items to record eating habits. The same
device may also be tasked with remembering where a car is parked
and detecting landmarks for rapid localization. We believe that it
is highly likely that these applications will be developed by various
parties each with their own specialization such as medical infor-
matics, personal analytics, and social networking.

Unfortunately, modern mobile systems support only a single ap-
plication’s access to a camera, which is adequate for photo/video
taking and interactive vision applications. Furthermore, camera
devices and vision algorithms are known to be too power hungry
for always-on operation [17, 18]. Thus, there is an urgent need to
support concurrent vision applications efficiently. While hardware
innovations are necessary [17, 20], this work approaches the above
challenge in system software.

We hold two key insights. First, concurrent vision applications
operate on the same root data: frames from the camera. Second,
typical vision applications use a relatively small set of founda-
tional algorithms, usually implemented with a standard library, e.g.,
OpenCV or FastCV. Thus, there is often significant redundancy
in the library functions they execute and the objects they create.
This presents an opportunity to share redundant library processing
among multiple applications to perform simultaneous vision tasks
with efficient system performance.

To exploit these insights, we design the Starfish software system
that not only supports concurrent vision applications, but also al-
lows them to share computation and memory objects securely and
efficiently. Our design stems from two major decisions. (i) Starfish
splits the vision library from an application into a separate process,
called the Core, which centrally serves all applications. Essentially,
Starfish converts a vision library call into a remote procedure call
into the Core. (ii) The Core shares library call results among appli-
cations securely, eliminating redundant computation and memory
use. Importantly, Starfish supports unmodified applications and un-
modified vision libraries without their source code, and guarantees
correctness to vision applications.

In doing so, Starfish improves the performance and energy effi-
ciency of concurrent vision applications. Leveraging work in re-
mote invocation [4, 21] and computation memoization [13, 19],
Starfish contributes novel techniques that meet its unique constraints.

We also report an implementation of Starfish on Android KitKat.
Our work intercepts calls to OpenCV by replacing its C++ linked
library with our own, and forwards calls over an Android Binder
with MemoryHeapBase shared memory regions. We support 22
OpenCV functions and 19 OpenCV objects and design interfaces
to ease Starfish library development and reduce source code redun-



Figure 1: Vision applications use a vision library to request computa-
tions on the root data to create derivative vision objects. Multiple vision
applications often require the same vision objects.

dancy. To fulfill the need to provide concurrent vision applications
with camera frame access, we design a frame service that operates
on top of the OpenCV camera framework mechanisms, allowing
Starfish to send frames to foreground and background applications
with no modification to application functionality.

We evaluate the Starfish design and implementation on a Google
Glass. We use microbenchmarks to understand the per-call over-
head of Starfish library call requests, validating the effectiveness of
our split-process and function caching design choices. We measure
that our optimizations reduce the per-call Starfish overhead from
20.9ms to 5.9 ms. We then evaluate the effectiveness of Starfish on
a combination of application benchmarks that share computations
and do not share computations to explore the range of benefits that
Starfish provides. We show that Starfish provides minimal nega-
tive impact to applications that do not share computations, while
providing substantial benefits to applications that do share compu-
tations. While running multiple face recognition applications typi-
cally incurs significantly increasing CPU utilization, scaling up to
60% for ten concurrent vision applications running at 0.3 frames
per second, Starfish maintains a CPU utilization, staying below
15%. Under Starfish, the system consumes 19% — 58% less power,
as Starfish maintains a power consumption at approximately 1210
mW while running the concurrent application workloads. Starfish
thus successfully provides system efficiency benefits to concurrent
vision applications.

The rest of the paper is organized as follows. §2 provides a
background of vision applications and libraries. §3 presents a high
level overview of the Starfish design. §4 describes design strategies
that reduce the overhead of the split-process execution. §5 details
caching policies that allow reuse of previously computed library re-
sults. §6 offers details regarding our Android + OpenCV Starfish
implementation, including a shared frame delivery service among
multiple applications. §7 evaluates Starfish using a combination of
application benchmarks, and §8 discusses related work.

2. COMPUTER VISION BACKGROUND

We derive our Starfish design through examining contemporary
implementations of vision applications. Typical computer vision
applications read frames from the camera service and use libraries
of computer vision algorithms to extract important information about
the content or geometry of a camera frame. In this section, we dis-
cuss various systems implications and opportunities of computer
vision applications.

2.1 Resource usage

Vision applications are resource-intensive, consuming memory,
memory bandwidth and CPU cycles. Sampling a full color image

uses 0.5 MB for a 640x360 color frame. At 30 frames per second,
this introduces 15 MB/s of data creation and usage. To maximize
memory reuse, Android applications typically issue a pre-allocated
multi-frame buffer to allow the Android camera service to write
frames to pre-allocated memory with every new frame capture. In
addition to removing the latency of allocating memory, this allows
the camera service to record new frames while others are being
processed or retained by the application.

Vision operations on received frames consume further CPU cy-
cles; computing corners on the frame can take 2.2 seconds at 40%
CPU utilization on a Google Glass. As such, applications typi-
cally operate on subsampled frames to reduce memory-handling
and computation bottlenecks. Still, real-time vision operations need
to maintain an acceptable frame rate while performing tasks that
may be highly computationally expensive and memory intensive.
This implies a necessity to optimize frame and feature processing.

2.2 Frame and feature redundancy

For continuous vision applications, the camera service streams
frames from the camera to the application as they become available.
This frame becomes the root data for repetitively computed vision
processing operations within an application. First, frame-level im-
age processing operations, such as resize and blur convolutions,
create derivative frames from the root data. Other processing op-
erations then generate successive derivatives when computing cor-
ners, edges, or other feature locations and descriptors, as illustrated
in the bottom half of Figure 1.

These streams of root data and derivative objects form common
first steps of many algorithms and applications. Many applications
utilize the same camera resource, and therefore can share the same
root data, as shown in the top half of Figure 1. Executing on the
root data, many applications follow the same basic image process-
ing steps. For example, for efficiency, many vision algorithms be-
gin by downsampling a frame and converting it to grayscale. Our
benchmarks for face recognition, scene geometry, and object recog-
nition all perform both of those tasks as common first steps. More-
over, low-level vision features are commonly used across vision
algorithms; an integral image serves as the basis for Viola-Jones
object recognition for face detection and character recognition [2].
Our scene geometry and object recognition benchmarks both em-
ploy SURF features. Even the same high-level features, such as
detected and recognized faces, can be utilized by diverse applica-
tions, including life-loggers [26], photography taggers [28], and
alert notification services [14].

2.3 Computer vision libraries

To incorporate packaged vision algorithms, developers of vi-
sion applications harness libraries, such as the OpenCV Library
for i0S, Android, and Windows Phone, or Qualcomm’s FastCV
Library for the latter two. While the libraries are useful for rapidly
prototyping applications, the recent trend of implementations have
become attractive for product-grade application performance and
efficiency. OpenCV versions increasingly leverage hardware to op-
timize the processing, e.g., SIMD processing with Intel SSE and
ARM NEON, GPGPU computing through CUDA and OpenCL,
and vision hardware support through OpenVX. As the library im-
plementations handle the hardware acceleration, vision libraries
provide an easy pathway to efficient vision performance. Optimiz-
ing library use will multiply the benefits of the library processing
acceleration.

An Android application incorporates OpenCV by linking to the
OpenCV libraries and calling the appropriate functions. OpenCV
Java functions call their associated native C++ functions to execute.



For further speed and control, many developers use the Java Native
Interface to directly call the OpenCV C/C++ functions. At that
level, an application invokes shared library functionality by using
classes and functions prototyped in header files. As of March 2015,
opencv.org reports a user base of 47,000 developers and 9 million
downloads [15].

2.4 Motivational observations

To summarize, we have the following insights about vision ap-
plications:

e Vision is memory-expensive and compute-intensive. Vision
uses heavy resource utilization to process frames and fea-
tures. There is much need to alleviate memory bandwidth
and CPU utilization.

o Vision libraries are common-case utilities. The code reuse
of the shared library is valuable for a variety of applica-
tions. Optimizing vision library performance thus improves
a widely-applicable developer tool.

e Library calls are redundant across multiple applications. Mul-
tiple applications call the same streams of library functions
on the same data for both low-level and high-level compu-
tations. This redundancy provides an opportunity to collec-
tively share computation results.

e Library calls are repetitive within an application. Vision ap-
plications compute frames and features on incoming streams
of frame data; a single application calls the same set of li-
brary functions on incoming frames. Thus, the opportunity
for sharing library execution occurs not just once, but repeat-
edly throughout an application’s execution.

These observations motivate our Starfish design, which services
concurrently running applications through memory and computa-
tion reuse through a split-process execution.

3. DESIGN OF STARFISH

We present a software system design called Starfish. Starfish en-
ables a system to concurrently run multiple vision applications with
improved overall system efficiency, reducing computational over-
head, memory pressure, and energy usage. Starfish employs two
key techniques. First, it features split-process execution that uses
a separate process to service vision library calls. Second, Starfish
allows that process to serve all applications with function caching
and shared memory distribution to reduce compute and memory
redundancy.

We constrain our design to maintain application transparency for
development: application developers use Starfish as though it is the
original library, with no need to understand the Starfish system’s
underlying mechanisms. We also preserve library transparency:
our design does not require modification of the library binaries,
allowing Starfish to work with closed-source libraries and open-
source libraries that can be rapidly-changing. Finally, we target ap-
plication performance preservation: an application should perform
as though it is a single application running without Starfish.

3.1 Split-process execution

Starfish splits a vision application’s execution into a pair of pro-
cesses, using the library call as the boundary. This allows Starfish
to: (i) separate vision processing from the calling application; and
(if) use a single process to centrally service vision library calls
across all applications. The library boundary provides transparent
function indirection and allows Starfish to create a centralization
point for shared computations.

3.1.1 Library Call Indirection

Because Starfish splits the application execution at the library
boundary, it supports legacy applications and legacy libraries with-
out requiring their source code. The API documentation and head-
ers of library structures and functions provide important informa-
tion that guide a Starfish implementation. Specifically, we can
glean the following understanding from the API:

e Memoizable Library Calls: The API documentation can re-
veal which library calls are deterministic, computationally
intensive, and widely useful among many applications. Such
functions will be targets for Starfish to optimize. Other func-
tions will be passed through to the original library for com-
putation.

e Object Structure: The library’s header files reveal the struc-
ture of library objects, allowing the Starfish implementation
to specify efficient methods for communicating marshalled
structures between applications.

The library boundary allows Starfish to use the above insights
to ensure correctness and improve efficiency. Using the library as
the boundary has a caveat: Starfish functions must strictly follow
the API specification, taking expected library input and returning
expected library output. This requires that Starfish does not alter
object structures defined by the original library, e.g., by adding a
member.

3.1.2 Centralization point for shared computation

By transferring library call computation out of the application
process and into the central service process, Starfish creates oppor-
tunities to share common computations among multiple applica-
tions.

Starfish matches library calls with identical arguments, reusing
computation results to reduce system-wide computational redun-
dancy, as described in §5. Centralizing library calls also allows effi-
cient library designs — such as hardware acceleration or offloading
optimization described in §2.3 — to extend to all applications.

Furthermore, centralized service of library calls avoids possible
security and privacy flaws introduced by sharing library call results
among multiple untrusted applications. For example, a distributed
computation scheme in which each application computes library
calls and shares the output would require trust of all participating
applications; an untrusted application could create accidentally or
maliciously erroneous objects, which would then be propagated to
other applications as putatively valid results. Instead, by using li-
brary calls themselves as the boundary and handling vision pro-
cessing in the central process, Starfish provides tight security and
control over library computation results.

Unfortunately, computing library calls on the central service in-
troduces communication overhead, as input and output arguments
need to be transferred between processes. We reduce this overhead
by efficiently reusing arguments over shared memory regions, as
discussed in §4.

3.2 Starfish overview

Using the vision library API as a boundary, we design Starfish,
illustrated in Figure 2, as a split-process execution system to effi-
ciently perform library computations.

The Starfish Core process centrally services a library call and
caches its arguments (both input and output). The computer vision
applications that use the library constitute the Apps of Starfish. Our
execution model assumes that the Core and App processes run on
an operating system that supports shared memory for inter-process
communication.



Starfish Core Service

Application A

»| Cache
Search

+ -
Function Vision
Execution.; Library

—

Function
Cache

Figure 2: Apps compile to original vision library headers, but link to
Starfish Library, which communicates with the Core to execute library
calls. For a first library call @, the Core uses the original library to
compute the result, which is stored in the function cache and returned
to the caller. For subsequent identical calls @, the Core retrieves the
cached result, reducing the overhead of redundant operations.

3.2.1 Starfish App

At runtime, an application’s binary dynamically links with our
Starfish Library in place of the original computer vision library.
This linked pair of application binary and Starfish Library becomes
the Starfish App. Dynamic linking is supported by all major lan-
guages (C/C++/Java/Obj-C/C#) to efficiently distribute and reuse
third-party codebases.

To redirect library calls, the Starfish Library replaces the origi-
nal library in the filesystem, intercepting the dynamic linking. We
move the original library elsewhere for use by the Starfish Library
and Core. This theoretically allows Starfish to support unmodified
applications. However, to enable our Android + OpenCV imple-
mentation to distribute camera frames, Starfish requires the devel-
oper to change a single SurfaceView object in the layout file, as
described in §6.2.

To implement the function behavior, the Starfish Library makes
arequest to the Core process to service library calls. Starfish blocks
the calling thread on the App while waiting for the library call re-
quest to return. This preserves the behavior of original library call
execution, which also blocks execution on the thread. This also al-
lows the operating system to schedule other threads while the Core
is handling the library call request.

3.2.2 Starfish Core

The Starfish Core is a central process that executes and tracks
shared computations and objects among multiple Apps; it main-
tains a function cache of recently performed library calls, along
with their input and output arguments. The Core links to the origi-
nal vision library to execute the computations.

The Core is responsible for executing vision library calls. When
an App makes a library call, the Starfish Library makes a library
call request by passing input arguments to the Core. On the Core,
library calls enter a queue of call requests. Multiple threads on the
Core operate on requests, searching the function cache for an in-
put argument match. If there is no match, the Core executes the
function using the original vision library and marshals output ar-
guments into the function cache, as @ in Figure 2. Otherwise, the
Core retrieves output arguments from the cache, providing them to
the calling App’s Starfish Library to complete the library call, as @
in Figure 2.

3.2.3 Unsupported library calls

Because Starfish relies on library call arguments to pass states
between Core and App, it does not support functions that mod-
ify program/system state beyond the arguments, e.g., functions that
modify global variables or write to the filesystem; Starfish does not
maintain a unified namespace across Apps.

Moreover, because the Core reduces computation redundancy by
reusing library calls among multiple Apps, Starfish cannot support
non-deterministic functions, such as those that use random vari-
ables or data from a changing network resource; providing cached
results would violate correctness for non-deterministic functions.

Finally, Starfish does not efficiently support all library calls. For
lightweight functions that are quick to compute, the overhead of
retrieving values from the Core outweighs the benefit of computa-
tion reuse in some cases, e.g., for single pixel value changes. A
Starfish implementation should choose not to support lightweight
functions.

The implementation of the Starfish Library links to the original
vision library to execute all unsupported functions in the App, re-
turning the resulting values (not shown in Figure 2 for clarity). This
fully preserves original library functionality and correctness.

Nevertheless, we observe that Starfish supports a significant por-
tion of OpenCV vision functions; none of the functions in our eval-
uation benchmarks exhibit system-modifying or non-deterministic
behavior. Blur, SURF, and face detection operations are some of
the many deterministic compute-heavy operations that Starfish sup-
ports.

4. SPLIT-PROCESS EXECUTION

The Starfish Core services library calls as a separate process.
This design naturally invites the use of remote procedure calls (RPCs)
over shared memory. On top of standard RPC mechanisms, we de-
sign zero-copy strategies for argument passing and shared memory
management that reduce the overhead of passing calls.

4.1 Argument passing via shared memory

While RPC argument passing has been researched and optimized
since its invention [29], Starfish is subject to a unique set of con-
straints that are not met by existing solutions such as those used
in [4, 21] or in the recent mobile system literature [10, 8, 6]. In par-
ticular, supporting unmodified applications and libraries prohibits
the use of shared pointer structures. Furthermore, as the Starfish
Library must be transparent to the application, Starfish must work
with virtual addresses prescribed by each application; we cannot
forcibly maintain a common virtual address space across multiple
applications.

Instead, we design Starfish argument passing strategies over a
reusable pool of shared memory regions for all Starfish Apps, guar-
anteeing both efficient and correct object marshalling. Specifi-
cally, Starfish minimizes the number of deep copies during argu-
ment passing. A deep copy involves a full traversal of an ob-
ject’s structure and is thus particularly expensive: a 640 x 360
color image takes approximately 3.5 ms to copy using memcpy on
a Google Glass. Typical RPC solutions on library calls incur four
deep copies: two per input argument and two per output argument.
Starfish avoids the inefficiency of these deep copies by: (1) reusing
input and output arguments across multiple applications, and (2)
guiding function execution output directly into memory shared by
the Core and the Apps.

4.1.1 Starfish marshalling sequence

Here we use a simple yet common code pattern in computer
vision algorithms, {b=foo(a); c=bar(b,a);}, to explain how
Starfish passes arguments efficiently. Both foo() and bar() are
vision library functions. Figure 3 shows how the code works in six
steps. When a Starfish App makes a library call request b=foo (a),
the Library and the Core follow a standard RPC sequence. First,
the Library marshals a serialized representation of input argument
a’s member fields into a shared memory region (1). The Core un-
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Core.

marshals a, creating an object from the member fields (2), and then
executes foo using the vision library (3). The Core marshals the
output argument b (4). Finally, the Library unmarshals b and sup-
plies it as the return of the function (5). The App reuses a and b for
a subsequent call bar (b,a) (6).

During unmarshalling, Starfish will direct member pointers to
the data in the shared memory region, i.e., Starfish unmarshals us-
ing shallow copies. The Core and the Starfish Library mark all un-
marshalled object data with Copy-on-Write, such that object modi-
fications will not affect the physical memory, which may be shared
with other Apps.

However, marshalling object data typically requires deep copies
to write into the shared memory regions. We design Starfish to
guide data creation directly into the shared memory regions and
reuse previously-marshalled arguments, limiting this deep copy over-
head of the marshalling procedure.

4.1.2 Direct data marshalling of library output

To reduce deep copying of library output. Starfish writes ob-
jects directly to shared memory regions during library execution,
as shown in Figure 3:(3). While the original library performs the li-
brary call, the Starfish Core intercepts calls to malloc. Starfish de-
fines any memory allocation requested from the heap during a func-
tion execution to allocate memory from a shared memory region
instead. While this may generate temporary intermediate shared
memory allocations during execution, Starfish frees any non-output
shared memory regions when the library call returns to minimize
the shared memory footprint.

After the library function executes, the Core can marshal the
specially-allocated output arguments by directing member point-
ers to addresses in the shared memory region, so no deep copying
is required. This is illustrated in Figure 3:(4).

4.1.3 Tracking arguments for shared memory reuse

The Starfish Library tracks opportunities to reuse arguments al-
ready marshalled into shared memory. If a previously-marshalled
object has not been modified, then it is consistent with its mar-
shalled representation in shared memory and does not need to be
marshalled again. The Starfish App performs this tracking by main-
taining ArgTrack, a map between objects in the virtual address
space of the App and their shared memory region ids. The Starfish

Library places a library call’s input arguments into ArgTrack after
marshalling the objects into their shared memory region, as shown
in Figure 3:(1). The Library also places output arguments into
ArgTrack after unmarshalling the objects from their shared mem-
ory regions, as shown in Figure 3:(5).

Starfish tracks an object’s consistency with the shared memory
region by applying mprotect on the argument objects on the App,
trapping write operations to the object. If the application attempts a
write access to a protected region, the Starfish Library removes the
arguments from ArgTrack, lifts the memory protection, and allows
the write.

Starfish references ArgTrack when marshalling input arguments;
if an object has already been marshalled, the Library simply sends
the shared memory region ID, removing the need for a deep copy
for reused arguments, as shown in Figure 3: (6). Searching an
ArgTrack of 100 elements induces minimal overhead, consuming
less than 100 us. Similarly, trapping a write operation incurs a
negligible overhead of only 1 ms. By removing the deep copies,
ArgTrack greatly minimizes the Starfish marshaling overhead.

Thus, Starfish completely eliminates all deep copies from each li-
brary call except: (i) to transmit previously unused input argu-
ments, (if) to record an output argument if it writes data to a speci-
fied pointer address, and (#i7) to maintain shared memory immutabil-
ity for application correctness.

At worst, each library call uses two deep copies per input argu-
ment and 1 deep copy per output argument. However, as an appli-
cation derives most input arguments from previous Starfish calls,
Starfish can reuse the arguments, eliminating all deep copies in
many cases. Minimizing deep copies greatly reduces the shared
memory pressure and communication overhead for performing re-
mote procedural calls.

4.2 Shared memory region management

Operating on a pool of shared memory regions allows the Starfish
Core to reuse input and output arguments among many Apps. How-
ever, allocating a new shared memory region for each passed ar-
gument would be expensive; a Google Glass takes approximately
0.6 ms to perform a MemoryHeapBase allocation of a 128 KB re-
gion. Starfish must also judiciously use the limited heap memory
provisioned by the Dalvik VM; Google Glass processes may have
at most 192 MB of heap memory. Hence, we conservatively limit



the total size of all of the Starfish shared memory regions, e.g., to
128 MB. While the operating system handles heap management is-
sues of memory allocation, e.g., physical memory fragmentation,
the Starfish Core centrally manages the distribution of the shared
memory regions for argument passing. Exploiting this central con-
trol, the Starfish Core adopts memory reuse techniques to reduce
the cost of shared memory allocation, while maintaining a heap
memory size limit.

To foster reuse of shared memory regions, the Core handles shared
memory requests using free lists of reusable shared memory re-
gions. Starfish designates a separate free list for a particular fixed
memory size, e.g., 2 KB, 16 KB, 128 KB, 1 MB, 2 MB. Mem-
ory allocation requests pull empty regions from the free list of the
smallest fixed size that would satisfy the request. Upon releasing
the memory region, the Core returns the region to the free list for
reuse. If the stack is depleted upon allocation request, the Core
allocates a new shared memory region from the OS. Such fixed-
size free lists, as used by the GCC standard library’s multi-thread
memory allocator [27] and by the classical buddy system memory
management [16], allow for rapid reuse of memory regions, as ap-
plications recycle empty memory regions without redundantly allo-
cating new physical memory or virtual memory regions. Fixed-size
free lists come with the drawback of wasting space when rounding
up to the next-largest free list region size. However, using a com-
mon fixed-size promotes the reusability of memory regions, which
allows Starfish to reuse allocated shared memory.

To provision for dynamic region-size partitioning of the shared
memory, Starfish does not fix the number of shared memory re-
gions in each free list. Instead, Starfish handles each free list as a
dynamically allocated stack, growing and shrinking as regions are
added or removed.

If a shared memory region allocation would cause the Core to
allocate more than the allotted total shared memory size (e.g., 128
MB), Starfish must free allocated memory regions. To maintain
function reusability, the primary candidates for clearing are the
empty regions in the free lists, regardless of size. However, if the
free lists are vacant, Starfish then clears regions referenced only by
the Core, ordered by least recent use. Starfish releases these least
recently used regions until there is enough free memory to allocate
a new region. These free list structures and policies allow Starfish
to efficiently allocate and reuse shared memory regions within a
fixed total memory size.

S. OPTIMIZING CENTRALIZED
LIBRARY CALL EXECUTION

As library calls into the Starfish Core arrive from multiple appli-
cations, the Core tracks identical library calls and reuses computed
results across multiple applications.

While exploiting this opportunity reduces computational redun-
dancy and promotes memory reuse, it also introduces caching and
concurrency challenges, including:

o Efficiently memoizing library calls across Starfish Apps;
e Enforcing consistent code behavior;

e Handling concurrent library call requests; and

e Promoting memoization through camera frame reuse.

We address these problems through thorough bookkeeping struc-
tures and policies, elaborated below.

5.1 Cached execution as function lookup table

The Core caches computed results to reuse library call outputs
for identical library calls with identical arguments. We design Memo-
Cache, a two-layer structure on the Core that tracks library call in-
put and output arguments.

Because the search for a match must be efficient and accurate, we
organize MemoCache as a function lookup table. At its top-level,
MemoCache consists of a list of function vectors, each represent-
ing a library function symbol, e.g., resize. Each function vector
contains a list of MemoCache entries, representing previous library
calls to the library function. A MemoCache entry includes a list of
pointers to its input argument shared memory regions and a list of
pointers to its output argument shared memory regions.

Starfish consults the MemoCache to handle library call requests,
as illustrated by Figure 4. The Core first retrieves the MemoCache
function vector corresponding to the function symbol, creating the
function vector if it does not exist . The Core then matches the
request’s input arguments against the contents of each entry in the
function vector @. Because each function vector maintains few
entries (e.g., 100s), running a memory compare (memcmp) against
entry arguments is significantly more efficient than performing a
non-cryptographic hash on a library call’s arguments. For exam-
ple, on a Google Glass, we measure that computing a fnv1 hash
requires approximately 19 ms of processing on a 640 x 360 frame,
whereas a memcmp requires only 6 ps.

If the request’s arguments do not match any function vector en-
tries, Starfish creates a new entry with the request’s input arguments
and inserts it into the function vector @. It then executes the func-
tion and supplies the list of output arguments to the MemoCache
entry @. Starfish creates the entry prior to function execution to
support concurrent library calls, as elaborated in §5.3. After the
function execution, the Core returns the output to the App ®.

If instead the request’s input arguments match those of a previous
MemoCache entry, the Core retrieves the corresponding entry ®
and delivers its output arguments to the App ®©.

As detailed in §4.2, Starfish clears shared memory segments to
create room for free shared memory regions. If a freed segment
serves as an input or output argument of the MemoCache entry, the
Starfish Core clears the entry from its parent MemoCache function
vector. This effectively serves as a Least-Recently-Used (LRU)
cache eviction policy and limits the size of MemoCache.

5.2 Consistent computation return timing

The rationale behind caching is that executing a library function
takes much longer than retrieving cached results. This also implies
that when a Starfish App make a library call, it could take a very
different amount of time to return. This opens a source code vul-
nerability due to code privacy timing attacks, similar to web privacy
timing attacks from browser caching [9]. That is, if a library call
returns immediately, a developer could determine that another ap-
plication had recently requested the same library call with the same
input arguments. These side channel timing attacks pose a threat to
the security of the application’ proprietary algorithms. Fortunately,
attacks can be easily deterred by mimicking execution time across
multiple library calls.

Thus, Starfish emulates library execution time for memoized func-
tions. When executing a library call, @ in Figure 4, Starfish mon-
itors the time it takes to run the function, the execution delay, and
stores it in the MemoCache entry. When another App is to receive
memoized results, we only return the function after blocking execu-
tion for the same amount of time ®. By emulating execution delay,
Starfish makes it indistinguishable whether the Starfish Library is
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returning a cached library call or performing the computation anew.
As Starfish blocks an App’s calling thread while waiting for the li-
brary call to return, the delay allows App threads to temporarily
sleep, thus improving system efficiency.

5.3 Concurrent library call requests

The Starfish Core handles requests from multiple Starfish Apps,
using multiple threads to operate on a queue of library calls in order
of arrival. However, handling multiple asynchronous library call
requests introduces two concurrency issues. First, multiple threads
may wish to simultaneously read and write to a MemoCache func-
tion vector, introducing concurrency dependency conflicts. Sec-
ond, a new library call request could arrive while another thread is
computing the same function with identical arguments. Evaluating
immediately would prohibit the use of memoized results, as they
would not yet be ready.

Contention over a MemoCache function vector may be created
by a thread accessing the function vector to search for an input ar-
gument match, while another thread alters the function vector by
creating or deleting an entry. To solve this contention, the Starfish
Core issues a readers-writer (RW) lock [7] on each function vector.
RW locks allow simultaneous read operations, but require exclu-
sive access for write operations. The Core issues a read-lock on a
function vector while searching its input arguments, and obtains the
write-lock when inserting new entries and deleting old entries. The
RW lock thus allows concurrent searches over the function vector
without contention, while only pausing to update the cache. To en-
sure timely updates, the Core issues write-preference on the RW
lock; no new read locks are acquired while there are pending write
locks. Using one RW lock per function vector is efficient; lock
contention occurs only if there is a function symbol collision.

To handle concurrent library calls with identical arguments, the
Core issues another lock on the delay element of the MemoCache
entry — not the MemoCache entry itself — while the Core uses the
original library to execute a function. This allows the Core to com-
pare a library call request against any MemoCache entry’s input
arguments, but introduces a waiting period between concurrent re-
quests; a library call request must wait for the completion of an
earlier identical library call request. Starfish then can insert the
execution delay from §5.2, subtracting the time spent waiting for
the first library call to complete. After the delay, Starfish uses the
output arguments as the results for the second library call.

Thus, we guarantee thread safety on the MemoCache structures,
while allowing non-interfering concurrent execution to proceed. As
our entry delay locks are independent, the system is deadlock-free.

5.4 Camera frame reuse

As camera frames are the root data of vision tasks, Starfish es-
tablishes frame coalescing to share frames between applications to
maximize function and memory reuse. Because of the lenient tim-
ing allowance of computer vision applications, Starfish can relax
the timing of frame requests, i.e., Starfish can supply a recently
captured frame, or wait for the next frame to be captured.

Starfish does this by optionally allowing the application devel-
oper to annotate their frame capture with a freshness latency and
a patience latency. When a App requests a frame, if Starfish has
previously supplied a frame (to another App) within the freshness
latency, we deliver it to the requesting App. Otherwise, the App
waits for the patience latency. If Starfish captures a frame while the
App is waiting, then it is delivered to the waiting App. If the pa-
tience latency expires and Starfish has not received a frame, Starfish
initiates a capture to supply the frame immediately.

Depending on the App, different freshness and patience latency
bounds may be justified. Developers of object recognition tasks
may not be concerned with the real-time immediacy of the vision
task, while motion estimation applications may have precise tim-
ing conditions. Without developer annotation, the Core measures
the time between frame capture requests, and uses this as the fresh-
ness latency, and sets the patience latency to 0. This satisfies typi-
cal image request contracts, as the frame rate is usually processing
bound.

Sharing the coalesced frame — and all its computed derivatives
— significantly reduces the computation overhead, memory alloca-
tion, shared memory burden, and marshalling expense on the sys-
tem.

6. IMPLEMENTATION

The Starfish system design described above is agnostic to vi-
sion library, device, operating system, and programming language,
provided that there are inter-process communication and shared
memory protocols, and that the vision library can be dynamically
linked. We implement the Starfish System to retrofit OpenCV’s
C++ library on Android 4.4.2 “KitKat" to demonstrate its feasibil-
ity. As OpenCV Android Java calls operate using native JNI/C++
calls, our implementation naturally supports the OpenCV Android
library. Although OpenCV is open-source, we treat its C++ library
as closed-source, not altering any OpenCV code. However, we in-
tercept Java support files to capture and distribute camera frames,
explored in §6.2. Here, we discuss details specific to our Android
implementation of Starfish. We evaluate this Starfish implementa-
tion performance on a Google Glass, explored in §7.



1 void resize(const Mat& src, Mat& dst, Size x*
dsize, double fx=0, double fy=0, int
interp=INTER_LINEAR ){

2

3 //Input Marshallers and Inputs

4 vector <pair<IMarshaller*,void *> > mIn;

5 mIn.push_back (make_pair (&MatM,&src));

6 mIn.push_back (make_pair (&SizeM, (void*)dsize
D)

7 mIn.push_back (make_pair (&DoubleM ,&fx));

8 mIn.push_back(make_pair (&DoubleM ,&fy));

9 mIn.push_back (make_pair (&intM,&interp ));

10

11 //0Output Marshallers and Outputs

12 vector<pair<IMarshaller*,void *> > mOut;

13 mOut . push_back (make_pair (&MatM,&dst));
14

15 //Function Request

16 starfishCall (CV_RESIZE, mIns, mOut);
17 %

Listing 1: Library hook function wrapper for resize library call.

Library hooks simply involve forwarding the correct arguments
along with their object marshallers.

In our implementation, the base of the Core consists of 1099
lines of C++ code, while the Starfish Library 489. The Starfish-
CameraView.java camera distribution framework consists of 396
lines of Java code. These sets of source code can be reused to sup-
port additional libraries with little to no modification.

On top of the base code, Starfish marshalling supports 19 OpenCV
objects with 853 lines of source code and 22 OpenCV functions us-
ing 1748 lines of source code in C++. This code is shared for the
Starfish Core and Library. While seemingly large, the marshalling
codebase is simple to write, and adding new marshallable objects
and functions is straightforward, as shown in §6.1. Many lines of
code are spent defining repetitive object oriented prototypes.

We compile the Starfish Library into a .so file to replace the
OpenCV library. The developer’s application links to this file to be-
come the Starfish App. Meanwhile, we compile and run the Starfish
Core as an Android background service.

Android specifies Binder as their inter-process communication
interface. We implement the Starfish Core as an Android Binder
service to receive calls from the Starfish Library. Starfish uses An-
droid’s MemoryHeapBase to generate shared memory segments for
use across the Binder. These standard Android protocols serve as
the substrate for our inter-process communication.

6.1 OpenCYV function hooks

The Starfish Library intercepts OpenCV calls through library
hooks, providing implementations for the OpenCV function head-
ers. To complete the call, each library hook must marshal objects
into shared memory and transmit them over the Binder interface.
We simplify the library hook code itself to ease the development of
additional library hooks into the Starfish Library.

To do this, we standardize an object marshaller interface IMar-
shaller. Each object marshaller has three functions: (1) prescribe
the required size of a shared memory region, (2) serialize an ob-
ject into a region, and (3) deserialize an object from a region. We
provide an IMarshaller implementation for each argument data
type.

To reduce source code redundancy in our implementation, we
also create a reusable function starfishCall() to handle the du-
ties of allocating shared memory regions for the inputs, marshalling
input arguments, structuring the Binder transactions to the Starfish
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Figure 5: StarfishCamView replaces OpenCV’s JavaCameraView to
multiplex the single-application frame delivery to all Starfish Apps.
Starfish defines the onPreviewFrame () callback to transfer frames to
the Starfish Core. The Core sends frames to StarfishCamWorkers on
all foreground and background Apps. Each StarfishCamWorker calls
its App’s developer-defined onCameraFrame () callback.

Core to execute the function, and unmarshalling the output argu-
ments. starfishCall requires a function handler, a list of input
objects and their object marshallers, and a list of output objects and
their object marshallers. Then, as it simply needs to cycle through
the lists of arguments and their marshallers, the starfishCall is
able to generically serve any Starfish library call.

The starfishCall and IMarshaller thus reduce the effort of
developing additional OpenCV library hooks. The implementa-
tion of a library hook simply needs to form input and output argu-
ment lists with their object marshallers, and call the starfishCall
function, as shown in Listing 5.4.

6.2 Android camera frame distribution

At the root of all vision algorithms is the camera frame, con-
taining raw pixel scene data. Starfish employs a frame distribution
system that supports multiple applications under the existing devel-
oper interface while increasing the opportunity for frame memory
reuse.

The camera device service on Android binds to a single applica-
tion running in the foreground. Fortunately, because the OpenCV
framework manages frame captures, we are able to augment the
existing framework to use Starfish to capture and supply camera
frames, allowing for centralized distribution of captured frames.

6.2.1 Legacy Android + OpenCV Frame Capture

OpenCYV provides a camera framework for Android development
that operates with minimal developer intervention, shown in Fig-
ure 5 (1). The developer specifies code to run on incoming frames
by providing an onCameraFrame() callback function with code
to be run for each incoming frame. The developer also specifies
an OpenCV JavaCameraView SurfaceView on which to draw re-
sults.

The OpenCV Java support files provide mechanisms to route
camera frames to an application’s callback. The JavaCameraView
captures the frame by providing the onPreviewFrame() callback
function and a foreground Surface View (itself) to the Android Cam-



era Framework. From the callback, it writes incoming frames into
an OpenCV InputFrame buffer. A separate CameraWorker thread
continuously runs the developer-specified onCameraFrame call-
back function on any incoming frames. Frames are captured con-
tinuously to limit latency, but the CameraWorker only triggers on—

CameraFrame after a previous onCameraFrame has completed. When

an application leaves the foreground, the camera service pauses,
preventing onPreviewFrame and onCameraFrame callbacks from
triggering.

6.2.2  Starfish Camera Frame Distribution

We design a frame distribution system, illustrated in Figure 5 (2),
to provide camera frames to all running Starfish Apps while main-
taining the same simple OpenCV callback interface. We do this by
overriding the JavaCameraView object with our StarfishCam-
eraView, which forces the foreground App to pipe frame captures
through the Starfish Core. In the StarfishCameraView file, we
use shared memory regions as our frame buffers and declare on-
PreviewFrame to deliver frames to the Core. Changing the Java-
CameraView to the StarfishCameraView requires developer inter-
vention in the Android XML layout file of their application.

As with the legacy system, we launch a CameraWorker thread
from the StarfishCameraView. The CameraWorker requests and re-
ceives frames from the Core and calls the developer’s onCamera-
Frame callback on received frames. This maintains the frame pro-
cessing operation expected by the developer.

Backgrounding an application halts the Android camera service,
pausing all vision activity. However, when another application’s

StarfishCameraView is brought to the foreground, its onPreviewFrame

will resume providing frames to the Core, allowing all Starfish ac-
tivity to resume. Thus, Starfish frame distribution can transition
seamlessly between applications as long as at least one Starfish ap-
plication is in the foreground with control of the camera.

The Starfish Core marshals frames through the same split-process
shared memory system discussed in §4. Starfish calls can thus reuse
frames in the Core without further frame marshalling or allocation.

6.3 Single-App mode

As characterized in our evaluation in §7, passing arguments to
the Core presents a computational overhead — 7.2 ms per library
call on our Google Glass implementation. While this overhead is
negligible compared to the efficiency of sharing vision computa-
tions across multiple applications, the overhead substantially de-
grades the performance when running a single Starfish App. Thus,
if there is only one active Starfish App, the Core tells the Starfish
Library to enter Single App Mode, simply using the original vi-
sion library to execute library calls on the App. This eliminates
the overhead of Starfish communication to preserve the application
performance of the single vision application.

During our characterization of Starfish in §7, we disable Single
App Mode to understand the overhead of Starfish on the vision ap-
plications.

7. EVALUATION

We evaluate our Starfish implementation on a Google Glass, pow-
ered by a TI OMAP4430 with a dual-core Cortex-A9. Because
dynamic frequency scaling can introduce uncontrollable factors in
our measurements, we pin the CPU clock frequency of our evalu-
ated Glass to a constant 600 MHz. Our evaluation seeks to answer
the following pair of questions:

How effective are major design decisions by Starfish in achieving
their objectives? We evaluate our design decisions by performing
a per-call analysis of the computation time of Starfish library calls.

We analyze the impact of our optimizations discussed in §4 and
§5 to validate the effectiveness of the marshalling reuse, shared
memory re-allocation, and cache search strategies.

What is the computational benefit of Starfish with concurrent ap-
plications? We quantitatively analyze the impact of Starfish on
multiple sets of concurrent applications running vision tasks, em-
ploying metrics of CPU utilization (using mpstat) and processing
time for each frame. We run benchmarks of concurrent applica-
tions that employ the same vision tasks and concurrent applica-
tions that do not. This displays the range of benefits possible with
Starfish. We also test the scalability of Starfish, evaluating its per-
formance ability on many simultaneous applications and its effect
on the power draw of concurrent vision applications.

7.1 Starfish per-call overhead

We microbenchmark a SURF feature detect () library call on
a 160 x 90 frame, producing a vector of keypoints. The computa-
tionally intensive detect library call takes 214.5 ms, exhibiting the
benefits of caching expensive library calls.

We also microbenchmark a resize() library call, reducing a
640 x 360 color image to 160 x 90. The resize() library call
uses an entire frame as an input argument and produces another
frame as an output argument, challenging the Starfish memory allo-
cation and marshalling overhead. Furthermore, the relatively quick
processing time of the native resize () function execution, taking
20.9 ms, highlights the need to optimize Starfish overhead.

We do a per-call analysis on our microbenchmarks by averaging
15 instances of library calls. We execute benchmarks for library
calls before and after optimizations, for the first library call and
subsequent library calls. We list the benchmark results in Table
1 and chart the results in Figure 6. While unoptimized Starfish
introduces a substantial overhead of as much as 20.89 ms per call,
our design optimizations reduce Starfish overhead by 55% — 75%.

7.1.1 Impact of argument and memory reuse

The transfer of input and output arguments dominates the unop-
timized Starfish overhead, occupying 84% of the processing time.
This overhead can be almost entirely eliminated through our mar-
shalling optimizations from §4.

Using ArgTrack allows Starfish Apps to track and reuse already-
marshalled arguments. This includes input frames, which are re-
ceived from the Core and are thus already in shared memory. By
sending the shared memory id from ArgTrack to send to the Core,
the App completely evades the 4.5 ms overhead of marshalling the
input arguments. Searching ArgTrack creates negligible overhead,
on the order of hundreds of microseconds, in marshalling inputs
and receiving outputs.

Unoptimized output arguments also pose a large overhead, re-
quiring 3.36 ms to allocate and another 1.60 ms to deep copy. How-
ever, our Starfish Core directly allocates library outputs into shared
memory during function execution, eliminating the overhead to al-
locate the shared memory region and deep copy the argument ob-
jects. Furthermore, because Starfish re-allocates shared memory
regions, objects are allocated quicker, reducing the function execu-
tion time as well.

The combination of these remote execution optimization designs
reduces the per-call 16.4 ms argument-passing overhead to only
3.0 ms for each library call.

7.1.2 Impact of cache search strategies

The MemoCache reduces the overhead of computing multiple
identical library calls with identical arguments. Even with an un-
optimized cache search, this poses great benefits, as Starfish Apps
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Figure 6: Execution time of resize and detect library call requests, with and without marshalling reuse and shared memory reuse optimizations.
Subsequent requests made by a separate App showcase the low cache retrieval overhead compared to the intensive library call.

avoid the large computational overhead of the function execution
— 20ms for resize(), and 215 ms for detect (). Starfish uses
cache design described in §5 to further minimize the cache search
overhead.

Our unoptimized Starfish MemoCache uses a lookup table struc-
ture with argument hash vectors to perform its searches. An fnvi
hash operates on input arguments to organize the cache entries by
hash value. This performs with a cache search time of 3.5 ms. By
contrast, our decision to organize the lookup table by function vec-
tor only involves a direct lookup on the function symbol, without
requiring any computation. We search the function vector by using
memcmp on the entries. As the function vector size is fairly small,
including only 10s to 100s of entries, this poses a smaller overhead
than the £nv1 hash computation. The result is a 16% reduction in
cache search time to 2.9 ms.

In summary, using our design optimizations in argument reuse,
shared memory reallocation, and cache structure, Starfish reduces
the per-call overhead from 20.9 ms to only 4.2 ms. This lowers the
computation time of repeated resize () calls by 71% and repeated
detect () calls by 97%, reducing per-frame processing time by 15
ms and 210 ms respectively.

7.2 Multi-App performance

We next analyze the ability of Starfish to service concurrent Apps.

‘We employ foundational vision tasks as benchmarks to examine the
benefits and overhead of Starfish on Apps that do and do not use the
same vision tasks.

7.2.1 Benchmark vision tasks

We evaluate Starfish App performance using benchmark vision
tasks of Face Recognition, Object Recognition, and Scene Geome-
try. Apps employ these vision tasks to perform a diverse set of du-
ties, as described below. While these tasks do not comprehensively
cover the expansive OpenCV library, these selected computations
serve as a basis for many vision applications that can potentially
run concurrently. In our evaluation, each of our Apps receives the
camera stream through the Starfish frame distribution. The App
sends the frame through each benchmark vision task, which begins
by converting the frame to grayscale, and resizing it to 160 x 90.
We include these pre-processing steps in our evaluation results.

Face recognition algorithms detect and identify individuals in an
image, useful for applications such as social network taggers and
alert notification services. Face recognition consists of two compo-
nents: detection and classification. The Viola-Jones face detection
algorithm compares a computed integral image against a cascade of
pre-trained Haar-like classifiers. If a region passes all cascade lay-
ers, the algorithm determines it to be the region containing a face.
Face classification identifies detected faces by matching against a
tagged dataset of faces. The Local Binary Pattern-based algorithm
compares a matrix of spatial histograms from the image with a
database of pre-trained spatial histogram matrices. The nearest-
neighbor is determined to be the identity. Under controlled lighting
and well-posed images, the face classification operates with 97%
accuracy [1]. On the Glass, running natively outside of Starfish,
face recognition performs at 4.36 frames per second (FPS) with a
memory footprint of 61.28 MB.



Table 1: Starfish execution time for first and subsequent calls to the same library functions.

Reuse optimizations reduce Starfish overhead by 36 %-71%

detect () resize()

Unoptimized Starfish Subsequent Subsequent | Unoptimized  Starfish Subsequent Subsequent

Request Reuse Request w/ Reuse Request Reuse request w/ Reuse
Prepare Inputs 1.71 £ 0.29 0.10£0.01 1.70+0.30 0.09 £ 0.02 6.72 + 0.31 0.11+£0.02 158+0.29 0.15+£0.03
Send Inputs 433 4+224 1.12£0.12 413 £254 130£0.20 4.54 +£2.38 1.55+£027 413£261 1.70+0.35
Search MemoCache 3.57 £ 042 2.67+£0.18 290+£0.20 2.81=+0.15 3.43 £ 0.40 287+£0.19 267+0.18 3.044+0.27
Execute Function 216.46 +20.84  210.94 + 22.07 - — | 20.85+256 18.17 +2.43 - -
Allocate Out 3.56 £ 1.00 - - - 3.36 £ 1.02 - - -
Marshall Out 3.77 £ 1.04 0.25 £ 0.03 - - 1.60 & 1.01 0.21 £ 0.05 - -
Transfer Out 1.14 + 043 1.08 £0.11 1.15£0.11 1.11 £0.05 1.25 4+ 0.39 1.11£021 1.09£0.24 12140.05
Total Exec. Time 23455 +£2626 216.15+ 14.00 9.88+1.07 5314+0.12 | 41.74 £3.60 24.024+420 947+097 6.10+£ 041
Starfish Overhead 18.08 £ 3.19 521+£038 988+1.07 531+0.12 | 20.89 £ 2.08 585+£039 9474097 6.10+041

Homography mapping estimates a camera’s relative motion is through

plane-to-plane mappings, which can be useful for applications such
as indoor map localization and obstacle awareness. To compute a
homography, we compute SURF corner points and match them be-
tween two frames in a camera stream. On the matched pairs, we use
the RANSAC algorithm and a least squares regression to generate
a homography matrix, revealing the geometric transform between
two camera frames. Running natively, scene homographies per-
forms at 3.54 FPS with a memory footprint of 59.97 MB.

Object detection recognizes food items, brand logos, and office
keys, enhancing applications such as life-loggers and reminder no-
tifications. A popular algorithm for object recognition uses Bag-of-
Words (BoW), which forms a collection of salient visual features
and compares them to a pre-trained dataset. We used SURF to
form the input vector of corners and feature descriptors. These fea-
ture descriptors are then compared against the BoW dataset using
a Support Vector Machine. Running natively, object recognition
performs at 1.17 FPS with a memory footprint of 59.7 MB.

7.2.2  Overhead and benefits on App combinations

When running the Starfish Apps at a fixed 600 MHz clock fre-
quency on the Google Glass, mpstat indicated that the system
maintained a CPU utilization average of approximately 60%, re-
gardless of the number and type of applications running. This is
likely due to thermal throttling. However, the application work-
loads significantly affect the time it takes to process each frame
through vision computations, impacting the effective frame rate.
We use the processing time as our metric to evaluate Starfish per-
formance. We list the processing time performance in Table 2.

Our benchmarks consist of seven combinations of Apps running
vision tasks. In a potential scenario, a mobile device would run si-
multaneous background applications running multiple vision tasks,
e.g., logging social interactions with face recognition, memorize
object placement with object recognition, observing scene changes
with homography fitting. This combination is represented by the
7th row of Table 2.

Different combinations of vision tasks hold different potentials
for library call sharing. Object recognition and homography fitting
both utilize SURF computations on the input frame but utilize dif-
ferent library calls later in their stream (RANSAC and SVM). Face
recognition uses a different set of features entirely, computing Vi-
ola Jones and LBPH algorithms to detect and classify faces. All of
our benchmarks resize the input frame and convert it to grayscale.
We also simultaneously run two instances of the benchmarks (col-
umn x2). This represents running multiple Apps using the same

vision task, such as a photo tagger and a lifelogger both using face
recognition.

Our benchmarks reveal the overhead of running Starfish. In iso-
lation, Starfish adds at most 30 ms of processing time per frame. At
this low overhead, the performance impact of running Starfish on
a single vision task only increases frame processing time by 10%
at most. (Although, as mentioned in §6.3, one should not activate
Starfish for use with a single App.)

Starfish’s efficiency benefits become apparent when running mul-
tiple identical vision tasks. While native processing time is dou-
bled when running two tasks, Starfish maintains the performance
within 22% of the original frame processing time. This reduces the
per-frame processing time of running two identical vision task in-
stances by 35%-41%. Non-identical combinations combinations
of applications also benefited from Starfish efficiency. Through
sharing the resize () library call on the input frame; Starfish de-
creased the processing time of Homog/Face and Face/Obj by 5.5%
and 4.7% respectively. Starfish performed best when sharing SURF
features for Homog/Obj, reducing processing time by 22%. The
combination of Homog/Face/Obj fell inbetween these, reducing
processing time by 9.7%.

Computational benefits continue to scale with additional vision
tasks. As shown in Figure 7, natively running additional face recog-
nition Apps significantly limits the frame rate, dropping to 0.3 frames
per second when running 10 Apps. However, using Starfish, the
frame rate degrades at a much reduced pace, sustaining 1.8 frames
per second when running 10 Apps. Thus, Starfish provides App
scalability, as many Apps can run with minimally impacted frame
rate performance.

7.2.3 CPU utilization and system efficiency

Stemming from constant activity, high CPU utilization contributes
to the high power draw of systems running vision applications. For
tasks with relaxed frame rates, the Starfish reduction of processing
time reduces the CPU utilization, and in turn, the energy consump-
tion and heat generation of the system.

We characterize this by running face recognition vision tasks at
a fixed frame rate of 0.3 FPS. At this rate, a single application’s
average CPU utilization is 5.3%, processing at 60% CPU utiliza-
tion for 230 ms, then idling near 1% for the remainder of a frame
period. Without Starfish, the CPU utilization will grow linearly
with the number of application instances, as each App will need
to perform its own 230 ms of processing. Starfish allows multiple
applications to share the same processing; when running 10 simul-
taneous face recognition applications at 0.3 FPS, Starfish keeps the
average CPU utilization below 13%, limiting the power draw to an
average of about 1210 mW, as measured with a Monsoon Power



Table 2: Average processing time per frame (seconds) on homography,
face recognition, and object recognition benchmarks, running natively
(NAT) and with Starfish (SF). x1 runs a single benchmark instance; x2
runs a pair of instances.

Benchmarks NAT x1 NAT x2  SFxlI SF x2
Homog 0.282 0.513 0310 0.332
Face 0.230 0438 0.239 0.271
Obj 0.855 1.692  0.864 1.001
Homog/Face 0.577 1.135 0547  0.611
Face/Obj 0.496 1.014 0472 0525
Homog/Obj 1.185 2202 0918 1.012

Homog/Obj/Face 1.288 2616  1.164  1.355

Monitor. The same applications without Starfish natively draw an
average of 2263 mW at 60% CPU utilization. The reduced power
overhead also reduces the device heat generation. As reported in
[18], each watt of average power consumption constitutes a 11 °C
increase in surface temperature. Thus, Starfish provides more com-
fortable use and longer battery life to systems running concurrent
vision applications with shared library calls.

In summary, we find that Starfish provides efficient, scalable sup-
port for multiple simultaneous vision Apps. The argument reuse,
shared memory reallocation, and cache structure designs signifi-
cantly reduce the per-call overhead of Starfish, which in turn al-
lows for applications to transparently and efficiently share library
computation results.

8. RELATED WORK

Three groups of research work are related to Starfish. First, re-
mote execution or offloading partitions applications to run on dis-
joint resources, such as the cloud or cloudlet. Starfish has a dif-
ferent objective and faces different challenges. The goal of elim-
inating redundant computation by vision tasks across multiple ap-
plications dictates that Starfish use library calls as the boundary
of splitting, instead of VMs, e.g., Gabriel [12], or threads, e.g.,
COMET [10] and CloneCloud [6]. Our need to support unmod-
ified applications and libraries prevents the use of new program-
ming models, e.g., Odessa [24]. MAUI [8] is related in its use of
library call boundary and support of largely unmodified applica-
tions. Starfish, however, leverages that the Core and Apps run on
the same system and optimizes RPC over shared memory, as shown
in §4.

Second, privilege separation splits computations across processes
to isolate data privileges to specific parts of an application for se-
curity purposes [5, 22, 30]. Some of these works actually split a
program across the boundary of a library, like Starfish. For exam-
ple, in [22], Murray and Hand use disaggregated libraries to run
an application across multiple Xen hypervisor domains. This pro-
vides complete isolated protection between the host process and
the disaggregated library. To share data, they use a shared mem-
ory area which only grants control to the library upon execution
attempts. CodelJail [30] separates library calls into a separate pro-
cess to isolate memory interactions. It can switch between trusted
and untrusted library memory to ensure that library interactions
only modify expected memory. Starfish, in contrast, does not place
trust restrictions on the data provided to each App or the Core li-
brary processing. As vision algorithms only operate on the input
and output arguments, all updates are provided through the library
calls. Thus, as any state changes are encoded as output arguments
of the function request, the Starfish Core does not alter existing
App memory. Furthermore, each App has full privilege to read and

5 T T T T T T I. T T
> 45 | Native C—3
s L 4r Starfish ———1 -
o 3.% o i
g o5t -
) 2 b
IS 15 F —
o 1+ E
L 05t E

0

1 2 3 4 5 6 7 8 9 10
Number of App Instances

Figure 7: Maximum frame rate of running simultaneous face recogni-
tion apps, with and without Starfish.

write to its memory; Copy-on-Write preserves shared memory al-
terations from affecting other Apps. This allows Starfish to supply
output arguments across many applications through our function
cache, as described in §5.

Finally, reusing computation results, widely known as memo-
ization, is an established computing methodology, as embodied by
the dynamic programming paradigm. Indeed, advanced techniques
exist for single applications, including automatic creation of mem-
oization functions [13, 19] and dynamic analysis to determine the
effectiveness of caching memoized results [11]. However, these
techniques avoid complex objects and data structures in the input
and output parameters of the functions. Additionally, the mem-
oization takes place within a single application, whereas Starfish
faces the challenge of maintaining consistent application perfor-
mance and preventing developers from determining whether an ob-
ject was cached or not, as shown in §5.2.

9. DISCUSSION

Library modification: We avoid modifying the vision library to
preserve existing function behavior. To maintain backward com-
patibility, libraries rarely change APIs, even with iterative version-
ing. As of November 2014, OpenCV function headers have re-
mained identical since OpenCV version 2.4.0, released April 2012
[23]. However, it is possible to fork OpenCV source code, and
library integration would allow for further optimization. For exam-
ple, data structures with shared pointers could be ordered for rapid
marshalling.

Developer annotation: Starfish targets developer transparency,
such that developers need not know the mechanisms underlying
Starfish. However, developers may wish to publicize which vi-
sion library calls their applications use. By using annotation to
relax developer privacy, this would allow for improved joint appli-
cation performance as different developers share common library
calls. Additionally, a slight difference in specific parameters of a
library call will prevent an application from leveraging a previous
computation. Developers could annotate a range of parameters that
satisfies their function request. This would allow Starfish to select
parameters that maximize computational sharing.

Optimizing Core execution: As mentioned in the related work,
devices can offload execution to a network for efficiency. Devices
can also use increasingly present vision hardware and heteroge-
neous units; the upcoming OpenVX API will increase the avail-
ability of vision hardware. The Starfish Core can act as the cen-
tral hub for offloaded processing, aggregating decisions regarding
tradeoffs in latency, efficiency, and workload across all library calls.
The Core could also use centralized knowledge to improve system
cache efficiency for the hardware resources, e.g., by ordering oper-
ations for optimal spatial reuse of the memory cache.



Broader use of Starfish: Beyond vision libraries, Starfish can
enhance other libraries that are computationally intensive with fre-
quent calls to deterministic functions, e.g., those processing sensor
data such as speech and gesture recognition. We foresee that adop-
tion of wearable devices will warrant more concurrent always-on
tasks that are serviced by such sensor-processing libraries. In ad-
dition to efficiency benefits, Starfish also helps guard applications
from untrusted libraries. With Starfish, an application can contain
untrusted libraries in a separate process (the Core) and only needs
to send the latter the data relevant to library computation.

10. CONCLUSION

Starfish employs split-process execution to reduce redundant vi-
sion computations across multiple applications. The Starfish de-
sign incorporates argument reuse, shared memory reallocation, and
caching policies to minimize the overhead of operating on library
call requests. We demonstrate Starfish’s effectiveness through a
Google Glass implementation, evaluating the system performance
of running concurrent vision applications. We demonstrate that
Starfish provides scalable benefits with additional applications; with
a workload of two to ten concurrent face recognition applications
that typically increases the computational burden from 10% to 60%
CPU utilization, Starfish maintains a CPU utilization under 13%,
which in turn reduces system power consumption by 19% — 58%,
as Starfish maintains a power consumption at approximately 1210
mW. Starfish allows concurrent vision applications to run with ef-
ficient system performance, thus contributing an important step to-
wards efficient wearable vision systems.
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